Static Program Analysis Meets Test Case Generation

Lecture 2

Maria Christakis
MPI-SWS, Germany

Textbook:

Static Program Analysis

Verification and testing

Sound verification
Program executions
Systematic testing

3

Question

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

o

o ” then it is certain that the property holds

* “No” then it is certain that the property does not hold

Question

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

o “Yes” then it is certain that the property holds

* “No” then it is certain that the property does not hold

-

No! The problem is undecidable! -

New question

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

o

o ” then it is certain that the property holds

e “No”, then it is unknown if the property holds or not

New question

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

o ” then it is certain that the property holds

e “No”, then it is unknown if the property holds or not

Yes! This problem is trivial! -

Static analysis: Challenge

”

Building a static analyzer that is able to answer “

for as many programs satisfying the property

Verification and testing

Unsound
verification

Program executions

Systematic testing

10

Question: Sound analysis

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

e “Yes” then it is certain that the property holds

e “No”, then it is unknown if the property holds or not

11

Question: Unsound analysis

Can we build an automatic analyzer that takes as input
an arbitrary program and an arbitrary property
such that if the analyzer answers:

AN
L NN
e “Yes” then itis certain that the property holds

e “No”, then it is unknown if the property holds or not

12

Static analysis: Cool facts

e Can automatically prove interesting properties

e absence of runtime exceptions, assertions,
absence of data races, termination, ...

13

Static analysis: Cool facts

e Can automatically prove interesting properties

e absence of runtime exceptions, assertions,
absence of data races, termination, ...

* Nicely combines math and tool building

e program semantics, data structures, logic,
decision procedures, discrete math, ...

14

Static analysis: Cool facts

e No concrete inputs required

e Code is abstractly executed from any point

15

Static analysis: Cool facts

e No concrete inputs required

e Code is abstractly executed from any point

e No manual annotations required

e Loop invariants are automatically inferred

Fun:
What Developers Want and Need

from Program Analysis: An Empirical Study

What makes a program analyzer
most attractive to developers?

18

What makes a program analyzer
most attractive to developers?

. What makes program analyzers difficult to use?

. What functionality should analyzers have?

. What should their non-functional characteristics be?

. What code issues occur most in practice?

1. What makes program analyzers
difficult to use?

Pain Points Using Program Analyzers

Wrong checks are on by default

Bad warning messages

Too many false positives

Too slow

No suggested fixes
Difficult to fit into workflow

Bad visualization of warnings

No suppression of warnings

No ranking of warnings

Can't selectively turn off analysis
Complex user interface

Can't handle all language features

No support for custom rules

Misses too many issues
Not cross platform

2. What functionality should
program analyzers have?

Code Issues Developers Would Like Detected

Security

Best practices
Concurrency
Performance
Memory consumption
Memory corruption
Maintainability
Dependencies
Reliability
Compliance

Style

Portability

Power consumption

20 40 60 80 100 120

2. What functionality should
program analyzers have?

Sources of Unsoundness That Should Not Be Overlooked

Exceptional control flow
Aliasing

Arithmetic overflow
Static initialization
lterators

Multiple loop iterations
Reflection

Object invariants
Non-null args to main
Floating point numbers
Purity

| I I I [I
20 40 60 80 100 120

3. What should their
non-functional characteristics be?

Acceptable False Positive Rate

o
D_
—
(@]
N 0
()]
Q.
O
e 3 -
()]
3
Y
2 o
c <
()]
(&)
o)
o _
D_C\I
D_

I I I I I I
0 20 40 60 80 100

Percent of results that can be false positives

3. What should their
non-functional characteristics be?

e Trade-offs about analysis time
e 57% for more intricate issues
e 57% for fewer false positives

e 60% for fewer false negatives

* Trade-offs about false positives

* 50.7% for fewer false negatives

3. What should their
non-functional characteristics be?

Program analysis should take a two-stage approach,
with one stage providing easy feedback in the editor
and another running overnight finding intricate issues.

3. What should their
non-functional characteristics be?

Program analysis should take a two-stage approach,
with one stage providing easy feedback in the editor
and another running overnight finding intricate issues.

“Give me what you can give, fast and accurate (no false positives).
Give me the slow stuff later in an hour (it is too good and cheap to
not have it). No reasonable change is going to be checked in less
than half a day but | do want that style check for that one line fix

right away.”

4. \What code issues occur most

in practice?

Live Site Incidents per Category

Reliability
Performance
Dependencies
Concurrency
Maintainability

Best practices
Security

Portability

Memory corruption
Compliance

Style

Power consumption
Memory consumption

0 10 20

30 40

27

Takeaways

* High false positive rates lead to disuse
e Developers would trade time for higher-quality results
* Program analysis should take a two-stage approach

e Costly bugs in services are mostly related to reliability
but developers rank reliability errors low

* Developers do not trust program analyzers to find
intricate issues although they want to

Fun:
CFar: A Tool to Increase Communication, Productivity,

and Review Quality in Collaborative Code Reviews

1. What makes program analyzers
difficult to use?

Pain Points Using Program Analyzers

Wrong checks are on by default

Bad warning messages

Too many false positives

Too slow

No suggested fixes
Difficult to fit into workflow

Bad visualization of warnings

No suppression of warnings

No ranking of warnings

Can't selectively turn off analysis
Complex user interface

Can't handle all language features

No support for custom rules

Misses too many issues
Not cross platform

1. What makes program analyzers
difficult to use?

Pain Points Using Program Analyzers

Wrong checks are on by default

Bad warning messages

Too many false positives

Too slow

sted fixes

Difficult to fit into workflo

Bad visualization of warnings

No su ' arnings

No ranking of warnings

Can't selectively turn off analysis
Complex user interface

Can't handle all language features

No support for custom rules

Misses too many issues
Not cross platform

What is a code review?

def is_scrolling_widget(w):
hasattr(w, "get_scrollpos") hasattr(w,

w orig_iter(self):
is_scrolling_widget(w):
w

def keypress(self, size, key):
self._original_widget.keypress(self._original_w.

def mouse_event(self, size, event, button, col, row, focus
ow = self._original_widget
ow_size self._original_widget_size
handled = False
hasattr(ow, "mouse_event"):
handled ow.mouse_event (ow_size, event, button, c

handled hasattr{ow, "set_scrollpos"):
button 4:
pos = ow.get_scrollpos(ow_size)
ow.set_scrollpos(pos 1)
True

Benefits of Code Reviews

e Discover bugs
* Improve readability and maintainability
* Mental model of the code

Problems with Code Reviews

* Time consuming
— Over 6 hours per week
— 100 reviews per week

* Spend effort on shallow defects
* Miss other defects

Approach: Automated Code Reviewer

* Insert feedback based on program analysis

* Goal:
— Increase communication
— Enhance productivity
— Reveal more defects

Extend Microsoft CodeFlow

CodeFlow

= H'CodeFIow 2171312

File Change
B description.bt
< [//build/corext
B corext.config Edit
- B //private/BuildEngine/BuildClient/src
+ £2 ClientBuilderCommonRobocopy. Edit
« [//private/DevTools/dbs/QTest/QTestLib/CodeCovRunr

 [B DynamicCodeCoverageRunner.cs Edit

- [//private/DevTools/dbs/QTest/QTestLibTests
- [Bl VsCodeCoverageRunnerTests.cs Edit
« [//private/DevTools/dbs/QTest/QlestShared
- [B] QTestConstants.cs Edit

Using VsTest adapter for nunit-based tests when dynamic coverage is enabled. Got confirmation from vstest team since this is officially supported and helps avoid hangs with nunit-console.exe - CodeFlow / On Premises [Dogfeod]

nunit

rgs();

stRunnerData. T inaryName,

QTestOptMacros

File name

yDesign

apply to Nunit
that require

Last updat

Status | Partic

Unpublis

pood sSMeN @

Deoes the runner-specific legic oenly apply to Munit
runner or do we have other runners that require

specialized logic as well?

P ¢

€) Active

CodeFlow

= !CodeFlow 217.131.2

File
B description.bt
< [//build/corext
B corext.config
- [//private/BuildEngine/BuildClient/src
~ £2 ClientBuilderCommonRobocopy.

« [//private/DevTools/dbs/QTest/QTestLib/CodeCovRunr

Change

Edit

Edit

 [B DynamicCodeCoverageRunner.cs Edit

« [//private/DevTools/dbs/QTest/QTestLibTests

- [B VsCodeCoverageRunnerTests.cs

Edit

« [//private/DevTools/dbs/QTest/QlestShared

- [B] QTestConstants.cs

Edit

nments:

Disp

File name

QTestOptMa:

cros| [clone

Using VsTest adapter for nunit-based tests when dynamic coverage is enabled. Got confirmation from vstest team since this is officially supported and helps avoid hangs with nunit-console.exe - CodeFlow / On Premises [Dogfeod]

yDesign

apply to Nunit
that require

Last updat

Status | Partic

Unpublis

pood sSmeN @

CFar Architecture & Features

Request & monitor build
Automatically join review
CloudBuild

CodeFlow| «—— /
el — [

Program
_ Analyzers
Insert analysis comments

Track code changes over time

CodeFlow + CFar

Using VsTest adapter for nunit-based tests when dynamic coverage is enabled. Got confirmation from vstest team since this is officially supported and helps avoid hangs with nunit-console.exe - CodeFlow / On Premises [Dogfeod] - (=] '3

= !CodeFlow 217.131.2

File Change
B description.bt nments: | Displ
« [//build/corext
B corext.config Edit

- [//private/BuildEngine/BuildClient/src
+ £2 ClientBuilderCommonRobocopy. Edit
« [//private/DevTools/dbs/QTest/QTestLib/CodeCovRunr
| . [B) DynamicCodeCoverageRunner.cs Edit |
- [//private/DevTools/dbs/QTest/QTestLibTests
| < [B] VsCodeCoverageRunnerTests.cs Edit
« [//private/DevTools/dbs/QTest/QlestShared
| - [B QTestConstants.cs Edit

yDesign

apply to Nunit
that require

QTestOptMacros clone

File name Last updat

Status | Partic

Unpublis

pood sSmeN @

&

In externally visible method
'‘DynamicCodeCoverageRunner.InferFramewaorkRun
nerForCoverage(FrammeworkRunner,
CTestRunnerData, CTestOptMacros,
CTestCmdLineQptions, Accountlnfo)', validate
parameter 'gqtestOptMacros’ before using it (run '’
cacr fxcop CloudBuild:retail /target dbs.gtestlib.dil
for details)

® &yDesign

User Study & Field Deployment

e User study
— 6 developers at Microsoft

— 1 hour sessions
— Think aloud

* Field Deployment
— 98 developers at Microsoft
— 15 weeks of real-world usage
— Logged data and emailed survey

Research Questions

RQ1l: Communication

RQ2: Productivity

RQ3: Code quality

RQ4: Useful

Percentage of respondents

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Result: Communication

Strongly agree

Neutral

Disagree

Strongly disagree

Overall, | feel that the analysis comments
enhanced collaboration among developers.

Result: Communication

P14: “Having some comments helped start the conversations
that might be missed until last minute, so their
addition is a net positive.”

Percentage of respondents

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Result: Code Quality

Increased

Decreased

The analysis comments decreased or increased
the quality of the code?

Result: Code Quality

100%

90%

80%

:nts

98% of analysis comments were addressed

Perc

20%

10%

Decreased

0%

The analysis comments decreased or increased
the quality of the code?

Percentage of respondents

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Result: Useful

Very useful

Useful

Unuseful

| found the analysis comments unuseful or useful?

Result: Useful

100%

90% Very useful

80%

s

P13: “...It seems like the auto-generated comments I've seen are
the tip of the iceberg... I'm optimistic that there’s a
lot of untapped potential.”

30%

Perc«

20%

10%

0%

| found the analysis comments unuseful or useful?

Discussion: Improvements to CFar

 Reduce information overload
— Simplify the warning messages
— Provide more filtering features

if (testRunner is VsTestRunner)
I
L
throw new QTestException($"Dynamic code co
$"VsTestRunner in

validate
parameter ‘gtestOpthacros’ before using it. {run '

® 5yDesign -

i

IELGENENS

e CFar: Automated Code Reviewer at Microsoft
— Designed to improve collaboration

e User Study & Field Deployment

— Increased communication

— Increased productivity
— Improved code quality
— Found CFar useful

Textbook:

Abstract Interpretation”

*Slides inspired by Martin Vechev’s course at ETH Zurich

54

Abstract interpretation: Steps

e Select or define an abstract domain
e based on the type of properties to prove

55

Abstract interpretation: Steps

e Select or define an abstract domain
e based on the type of properties to prove

e Define sound abstract transformers
e expressing the effect of each expression or statement
on the domain

56

Abstract interpretation: Steps

e Select or define an abstract domain
e based on the type of properties to prove

e Define sound abstract transformers
e expressing the effect of each expression or statement
on the domain

e |terate abstract transformers over the domain
e until a fixed point is reached

57

Abstract interpretation: Steps

e Select or define an abstract domain
e based on the type of properties to prove

e Define sound abstract transformers
e expressing the effect of each expression or statement
on the domain

e |terate abstract transformers over the domain
e until a fixed point is reached

The fixed point is the over-approximation of the program

58

Example

foo(int i) {

1: 1int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= x + vy,

59

Example: Abstract domain

foo(int 1) {

1: int x = 5;
2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy;

60

Example: Abstract domain

foo(int 1) {

1: int x = 5;
2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;

}

/: assert 0 <= X + Vy;

AN
N
\

Sign abstract domain

Example: Abstract domain

T
5; /////\\\\\
7;

foo(int 1) {

1: int x =
2: int y = Il
+ -

30 if (i >= 0) { \/ il
4: y =y + 1;
5: i=1i- 1; Abstract state
6: goto 3; 0

} \
/. assert 0 <= X + y; 1

} Sign abstract domain

62

foo(int 1) {

N B

O Ul bW

N

int x
int y

5;
/5

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy;

Example: Abstract transformers

pc| X

—
+ | <
—

63

foo(int 1) {

N B

Ol bW

N

int x
int y

5;
/5

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy;

Example: Abstract transformers

pc| X

—
+ | <
—

pc| x

—
+ <
—

64

foo(int 1) {

N B

Ol bW

N

int x
int y

5;
/5

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy;

Exercise: Abstract transformers

pc| X

pc| x

65

Exercise: Abstract transformers

foo(int 1) {

1: int x = 5;
2: int y = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy;

Is this transformer sound?

pc| X

—
—

pc| X

Exercise: Abstract transformers

foo(int 1) { Pei x|yt
A\T|-|T

1: int x = 5;

2: inty = 7; JVL

3: if (i >=0) {

4: y =y + 1; 4: y =y + 1;

5: i=1-1;

6:

goto 3;
}

assert 0 <= x + vy; pc| x|y | i

N

Is this transformer sound? No!

67

foo(int 1) {

N B

Ol bW

N

int x
int y

5;
/5

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy;

Exercise: Abstract transformers

pc| X

pc| x

68

Exercise: Abstract transformers

foo(int 1) {

1: int x = 5;
2: int y = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy;

Is this transformer sound?

pc| X

—
o
—]

pc| X

Exercise: Abstract transformers

foo(int 1) { Pei x|yt
4| T T
1: int x = 5;
2: inty = 7; JVL
3: if (i >=0) {
4: y =y + 1; 4: y =y + 1;
5: i=1-1;
6:

goto 3;
}

assert 0 <= x + y; pC v | i

N

Is this transformer sound? Yes!

70

Exercise: Abstract transformers

foo(int 1) {

1: int x = 5;
2: int y = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy;

Is this transformer precise?

pc| X

—
o
—]

pc| X

Exercise: Abstract transformers

foo(int 1) { Pei x|yt
4| T T
1: int x = 5;
2: inty = 7; JVL
3: if (i >=0) {
4: y =y + 1; 4: y =y + 1;
5: i=1-1;
6:

goto 3;
}

assert 0 <= x + y; pC v | i

N

Is this transformer precise? No!

Abstract transformers

e Abstract transformers are easily sound and imprecise
e by always returning T

e Defining the most precise transformer is not always possible
e called best transformer

* Precision may be sacrificed for performance reasons

73

Example: Fixed point

foo(int i) {

1: int x = 5;
2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy;

pcC

| x
<

int i

Example: Fixed point

foo(int 1) { -~

x
=<

1: int x = 5;

2: int y = 7; JVL
3: if (i >=0) {
4: y =y +1; int i
5: i=1-1;
6: goto 3;

}
/: assert 0 <= X + Vy; pc | X

| <

75

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy,

pcC

>
| <

76

Example: Fixed point

foo(int i) {

N

Ol bW

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + y;

1:

pC

x

-

pcC

| <

77

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= x + vy,

pc| X |y | i

78

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;

}

/: assert 0 <= x + vy,

2:

pC

pcC

+ | <<

79

Example: Fixed point

foo(int i) {

1: int x = 5;
2: int y = 7;
3: if (1 >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;

}

/: assert 0 <= x + vy,

©
(@]
x

80

Example: Fixed point

foo(int i) {

1: int x = 5;

2: int y = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;

}

/: assert 0 <= X + y;

3:

pcC

+ | <

pC

pC

81

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy,

pcC

82

Example: Fixed point

foo(int i) {

N

Ol bW

int x = 5;
inty = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + y;

pcC

pC

83

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy,

pcC

+ | <

84

Example: Fixed point

foo(int i) {

N

Ol bW

int x = 5;
inty = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + y;

pcC

+ | <

pC

+ | <<

85

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <= x + vy,

6:

pcC

goto 3;

Example: Fixed point

foo(int 1) { pe | Xy | i

1: int x = 5;

2: int y = 7; JVL
3: if (i >=0) {
4: y =y + 1; 6: goto 3;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= X + Vy; pc| x|y | i

87

Example: Fixed point

foo(int i) { pe|x |y | 1] |PC e
1)1 T 2 3

1: int x = 5;

2: 1nty = 7; oc| x|y i o -

3. if (i >= 0) { ol Il Il Tl I °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <= X + Vy;

Exercise: Property

foo(int i) { pe x|y 1) pe bC
1)1 T 2 3

1: int x = 5;

2: 1inty =7; oc| x|y | i o -

3. if (i >= 0) { ull il il A °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <= X + Vy;
}

Is the property verified?

Exercise: Property

foo(int i) { pc x|y || pc| x|y | i pc| x|y
111 T 2 |+ T 3|+ |+
1: int x = 5;
2: inty = 7; : -
pc| X |y | | pc| X |y || pc| x|y
3: if (i >=0) { 4 |+ |+ |+ 5+ |+ | + 6|+ |+
4: y =y + 1;
- i=i_1; pc| X |y | i
6: goto 3; Tels
}
/: assert @ <= X + y;
}

Is the property verified? Yes! The domain is precise enough!

Exercise: Property

foo(int i) { pe x|V 1] |Pe e
11 T 2 3

1: int x = 5;

2: 1inty =7; oc| x|y | i o -

3. if (i >= 0) { ull il il A °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <= x - vy;
}

Does the property hold?

Exercise: Property

foo(int 1) {

1: int x = 5;
2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <= x - vy;
}

Does the property hold?

pc pc| x|y pc
1 2 [+ 1 3
pc pc| x|y pc
4 5|+ |+ 6
pc| X
7 |+ |+
No!

Exercise: Property

foo(int i) { pe x|V 1] |Pe e
11 T 2 3

1: int x = 5;

2: 1inty =7; oc| x|y | i o -

3. if (i >= 0) { ull il il A °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <= x - vy;
}

Is the property verified?

Exercise: Property

foo(int i) { adRdRAN AIRRAR &
1\Lj1L)T 2+ 1)T |3+

1: int x = 5;

2: inty = 7; pc| x|y | i pc|x|y|i pc| x|y

3 if(i>=9){ 4 |+ |+ | + 51+ |+ |+ 6 | +

4- y =y + 1;

5 i=1- 1; pc| x|y | i

6: goto 3; 71+ +

}
/: assert 0 <= x - vy;
}

Is the property verified? No! The domain is sound!

Exercise: Property

foo(int i) { pe x|y 1) pe e
1)1 T 2 3

1: int x = 5;

2: 1inty =7; oc| x|y | i o -

3. if (i >= 0) { ull il il A °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <=y - x;
}

Does the property hold?

Exercise: Property

foo(int 1) { Pei x|y |1 Pl XY Pe
11 T 2 |+ 3

1: int x = 5;

20 e o= 78 pc| x|y | i pc| X |y pcC
3: if (i >= 0) { a0 T e B T B 0
4: y =y + 1;

5: i=1-1; oc| x|y

6: }goto 3; =

/. assert 0 <=y - Xx;

}

Does the property hold? Yes!

Exercise: Property

foo(int i) { pe x|y 1) pe e
1)1 T 2 3

1: int x = 5;

2: 1inty =7; oc| x|y | i o -

3. if (i >= 0) { ull il il A °

4: y =y + 1;

5: i=1-1; oc

6: goto 3; .

}
/: assert 0 <=y - x;
}

Is the property verified?

Exercise: Property

foo(int i) { pc x|y || pc| x|y | i pc| x|y
174 T 2 |+ T 3|+ |+

1: int x = 5;

2: 1nty =7, ocl x|y | i el xly i < Ixly

3: if (i >=0) { 4 |+ |+ |+ 5+ |+ | + 6|+ |+

4: y =y + 1;

- i=i_1; pc| X |y | i

6: goto 3; Tels

¥
/: assert 0 <=y - X;
h

Is the property verified? No! The domain is too imprecise!

A more precise abstract domain

@ [-=,~]

[2,°°]

99

foo(int 1) {

N B

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <=y - Xx;

Example: Abstract domain

pcC

X

Y

[_2100]

[1,7]

[1,2]

Abstract state

Example: Fixed point

foo(int i) { el X

1: int x = 5;

2: inty = 7; JVL
3: if (1 »>=0) {
4: y =y +1; int i
5: i=1-1;
6: goto 3;

}
/: assert 0 <=y - X;

100

Example: Fixed point

foo(int i) { el X

1: int x = 5;

2: inty = 7; JVL
3: if (i >=0) {
4: y =y +1; int i
5: i=1-1;
6: goto 3;

}
/: assert @ <=y - X; pc| x y

101

102

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pcC X y [
1 J— J— [_oo’oo]
1: 1int x 5;

103

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x
int y

if (i

y:
i =

:5;
:7;

>=0) {
y +1;
i - 1;

goto 3;

¥

assert 0 <=y - X;

pc X y [

1 J_ J_ [_oo'oo]
1: 1int x 5;

pc X y [

2 [5,5] J_ [_oo'oo]

104

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pc X y [
2 [[55] | L [[-==]
2: inty = 7;

105

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x
int y

if (i

y:
i =

:5;
:7;

>=0) {
y +1;
i - 1;

goto 3;

¥

assert 0 <=y - X;

pc X y [

2| [551] L |[-e]
2: inty = 7;

pc X y [

3 [5r5] [717] [_oo'oo]

106

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pC X y i
3| [551 | [7,7] | [-=,~]
3: if (i >= 0)

107

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc X y [

3| [55] | [7,7] |[->=,~]
3: if (i >= 0)
pc X y [

4 | [55] | [7,7] | [0,]
pc X y [

7 | [5,5] | [7,7] |[-,-1]

108

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <=y - X;

pc X [
4 | [55] | [7,7] | [0,]
4: =y + 1;

Example: Fixed point

foo(int i) { e X i !

4 | [55] | [7,7] | [0,]

1: int x = 5;
2: int y = 7; JVL
3: if (i >=0) {
4: y =y + 1; 4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X; pc| X Y i

} 5| [55] | 88] | [0,%]

109

110

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <=y - X;

pc X y |
51 [55] | [88] | [0,~]
5: =1 - 1;

111

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc X y [
51| [55] | [88] | [0,]
5: =1 - 1;
pc X y [
6 [5r5] [818] ['1100]

112

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pc X y [
6 | [55] | [88] | [-1,~]
6: goto 3;

113

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x
int y

if (i

y:
i =

:5;
:7;

>=0) {
y +1;
i - 1;

goto 3;

¥

assert 0 <=y - X;

pc X y [

6 | [55] | [88] | [-1,~]
6: goto 3;

pc X y [

3 [5r5] [818] ['1100]

114

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pcC

[5,5]

[8,8]

[_1100]

pcC

[5,5]

[7,7]

[_oo'oo]

JOIN

115

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc X y [

3 [515] [818] ['1100]

pc X y [

3| [5,5] | [7,7] | [-*,]
JOIN

pc X y [

3 [5r5] [718] [_oo'oo]

116

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (1 »>=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pC X y i
3| [551 | [7,8] | [-=,~]
3: if (i >= 0)

117

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc X y [

3| [55] | [7,8] |[->,~]
3: if (i >= 0)
pc X y [

4 | [55] | [7,8] | [0,]
pc X y [

7 | [5,5] | [7,8] |[-,-1]

118

Example: Fixed point

foo(int i) {

1: int x = 5;

3: if (i >=0) {
4: y=y+1;
5: i:i_l;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc| X y i

4 | [5,5] | [7,8] | [0,]

!

4: y=y+1;

U

,>'ThE\NHInotternﬂnate! -

119

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;

pc X y [

3 [515] [818] ['1100]

pc X y [

3| [55] | [7,7] |[->=,~]
J WIDEN

120

Example: Fixed point

foo(int i) {

1: int x = 5;

2: inty = 7;
3: if (i >=0) {
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

pc X y [

3 [515] [818] ['1100]

pc X y [

3| [55] | [7,7] |[->=,~]
J WIDEN

pc X y [

3 [5r5] [7r°°] [_oo'oo]

121

Example: Fixed point

foo(int i) {

N

Ol bW

N

int x = 5;
int y = 7;

if (1 >= 0) {
y =y +1;
i=1-1;
goto 3;

}

assert 0 <=y - X;

pcC

[5,5]

[7,]

[_001_1]

Exercise: Property

foo(int i) {

1: int x = 5;

2: 1inty =7; oc| x
3. if (i >= 0) { 71 5]
4: y =y + 1;
5: i=1-1;
6: goto 3;
}
/: assert 0 <=y - X;
}

Is the property verified?

Exercise: Property

foo(int i) {

1: 1int x = 5;

poAmy = pc| X y |
3: if (i >=0) { 7 | [55] | [7,%] |[-*,-1]
4: y=y+1;
5: i:i—l;
6: goto 3;
}
/: assert 0 <=y - X;
}

Is the property verified? Yes! The domain is precise enough!

Static Program Analysis Meets Test Case Generation

Lecture 2

Maria Christakis
MPI-SWS, Germany

