
Lorenzo Alvisi
Cornell University

THE PIT AND THE PENDULUM

Ease
of

Programming
Performance

A CLASSIC HORROR STORY

Ease
of

Programming
Performance

A CLASSIC HORROR STORY
Ease

of
Programming

Performance

A CLASSIC HORROR STORY

CONCURRENCY
Pierre Franc Lamy (1855-1919)
Young girl on a balcony

Carlo Carrà (1912)
Concurrency, Woman on a balcony

CORRECTNESS

• Safety
• “nothing bad happens”

No two processes in
the critical section at

the same time

CORRECTNESS

• Safety
• “nothing bad happens”

• Liveness
• “something good

eventually happens”

No two processes in
the critical section at

the same time

A process that wants
to enter the critical

section will be able to
do so eventually

SEQUENTIAL OBJECTS

• Each object has a state
‣ Register : the value it stores
‣ Queue: the sequence of objects it holds

Thanks to Maurice Herlihy
“The Art of Multiprocessor Programming”

SEQUENTIAL OBJECTS

• Each object has a state
‣ Register : the value it stores
‣ Queue: the sequence of objects it holds

• Each object has a set of methods
‣ Register : Read/Write
‣ Queue: Enq/Deq/Head

Thanks to Maurice Herlihy
“The Art of Multiprocessor Programming”

SEQUENTIAL SPECIFICATIONS
• If (precondition)

‣ the object is in such-and-such-state before
method is called

• Then (postcondition)

‣ the method will return a particular value

‣ or throw a particular exception

• and (postcondition continued)

‣ the object will be in some other state when
method returns

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is non-empty

• Postcondition
‣ Returns first item in queue

• Postcondition
‣ First item no longer in queue

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is non-empty

• Postcondition
‣ Returns first item in queue

• Postcondition
‣ First item no longer in queue

Thanks to Maurice Herlihy

PRE AND POST CONDITIONS
FOR DEQ

• Precondition
‣ Queue is empty

• Postcondition
‣ Throws Empty exception

• Postcondition
‣ Queue state unchanged

Thanks to Maurice Herlihy

SEQUENTIAL SPECIFICATIONS
ARE AWESOME

• Interactions among methods captured by side-effects
on object state

‣ State between method calls is meaningful

• Documentation size linear in the number of methods

‣ Separation of concerns: each method described in
isolation

• Can add new methods

‣ Without changing description of old methods

So is
Maurice

WHAT ABOUT
CONCURRENT SPECIFICATIONS?

• Methods?

• Documentation?

• Adding new methods?

METHODS TAKE TIME

Q.enq() Q.enq() void

Method call

METHODS TAKE TIME
• If you are Sequential
‣ Really? Never noticed!

• …but if you are Concurrent
‣ Method call is not an event
‣ Method call is an interval

̣ Concurrent method calls overlap!

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ Object needs meaningful states only

between method calls

• Concurrent
‣ Because method calls overlap, object may

never be between method calls

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ Each method described in isolation

• Concurrent
‣ Must consider all possible interactions

between concurrent calls
- What if two enq() overlap?
- What if enq() and deq() overlap?

WHAT DOES IT MEAN FOR
CORRECTNESS?

• Sequential
‣ New methods do not affect existing

methods

• Concurrent
‣ Everything can potentially interact

with everything else

WHAT ABOUT DATABASES?

TRANSACTIONS TAKE TIME

OUTLINE

Distributed Systems Databases

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result of

the latest completed write

REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result of

the latest completed write

• And if they are concurrent?

• Sequential specification
‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result of

the latest completed write

• And if they are concurrent? Anything goes!

REGISTERSSAFE

 REGISTERS
• Sequential specification

‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?
‣

SAFE

Time

w1(5)
r1

r2 r3

w2(6)

Anything goes!

(5)

(??) (??)

SAFE REGISTERS

Time

w1(5)
r1

r2 r3

w2(6)

A read overlapping with a write returns
either the old or the new value!

(5)

(5) (5)

• Sequential specification
‣ A read returns the result of the latest completed write

• What if reads and writes can be concurrent?
‣ A read not concurrent with a write returns the result

of the latest completed write

• And if they are concurrent?

r2 r3(6) (6)
r2 r3(5) (6)
r2 r3(6) (5)

REGULAR REGISTERS

CAN WE DO BETTER?

ATOMIC REGISTERS

A LITTLE MORE FORMALLY
• Execution of a concurrent object modeled

by a history
‣ a finite sequence of operation invocation and responses

• A history H is sequential if:
‣ the first event of H is an invocation

‣ each invocation (but possibly the last) is immediately followed
by a matching response, followed by a matching invocation

• A history that is not sequential is concurrent

LINEARIZABILITY
(HERLIHY AND WING 1990)

• A history H is linearizable if there exists a
permutation of the operations in H such that
‣ For each object , the sub-history

respects the sequential specification of

‣ If the response of operation occurs in H before the
invocation of operation , then appears before
in

✦ in other words, respects the real-time ordering of non-overlapping operations

⇡

o ⇡|o
o

o1
o1o2 o2

⇡

⇡

EXAMPLE: REGISTERS

w1(5)

r1

r2 r3

w2(6)

(?)

(?) (?)

r1(5) r2 (5) r3 (6)

Time

EXAMPLE: REGISTERS

w1(5)

r1

r2 r3

w2(6)

(?)

(?) (?)

r1(5) r2 (6) r3 (6)

Time

EXAMPLE: REGISTERS

w1(5)

r1

r2 r3

w2(6)

(?)

(?) (?)

r1(5)

Linearizable registers are called atomic

r2 (5) r3 (5)

Time

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

 QUEUE?LINEARIZABLE

Time

Q

Q.enq() Q.deq()

Q.enq() Q.deq()

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

• A history H is sequentially consistent
if there exists a permutation of the

operations in H such that
‣ respects the sequential specification of each object

‣ If the response for operation at occurs in H before the
invocation for operation at , then appears before in

⇡

⇡|o o

o1
o2

pi
pi o1o2 ⇡

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

SEQUENTIAL CONSISTENCY
(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES

MULTIPROCESS PROGRAMS", IEEE TOC C-28,9 (SEPT. 1979), 690-691)

Temporal order of non-overlapping
operations is preserved only for
operations by the same thread

EXAMPLE

w1(5)

w2(7)

Latest
linearization

r1(?)

r1(7) only acceptable value
under linearizability

but under sequential consistency…

Earliest
linearization

EXAMPLE

w1(5)

w2(7)

r1(?)

r1(5) is also acceptable under
sequential consistency

…this is a valid permutation of the same history

THINK GLOBAL, ACT LOCAL

• A property P of a concurrent system is

if the system satisfies P
whenever each individual object satisfies P
‣ Given two objects and each satisfying P, the

composite object satisfies P
o1 o2
[o1, o2]

local

LINEARIZABILITY
IS A LOCAL PROPERTY

Theorem

A history H is linearizable iff
for each object , H restricted to the
operations in is linearizable

• Because linearizability is a local property,
objects can be implemented independently

o

o

What about
sequential consistency?

THE CASE OF
THE FIFO QUEUES

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUES

P.enq() P.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUES

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

THE CASE OF
THE FIFO QUEUES

Q.enq() Q.deq()Q.enq()

Time

THE CASE OF
THE FIFO QUEUES

Q.enq() P.enq() Q.deq()

P.enq() Q.enq() P.deq()

Time

Not Sequentially Consistent!

THEOREM

Sequential Consistency
is not composable

i.e., an execution involving a collection of sequentially
consistent objects may not be sequentially consistent

BREAK

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<c, cid, op>

client-specific
command identifierclient c

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<cid, result>

client c

“A distributed system is one in which the
failure of a computer you didn’t even
know existed can render your own
computer unusable.”

Leslie Lamport

FAILURE MODELS

crash

THE BIG PICTURE

Replica1Replica2Replica3Replica4Replica5Server

<cid, result>

client c

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

client c

f + 1

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

client c

f + 1

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

c

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

State machine

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

State machinesState machine

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

State machines

Clients

Commands

STATE MACHINE REPLICATION
1. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

4. Vote on replica outputs for fault-tolerance
State machines

Clients

Voter

A CONUNDRUM

. . .

A: voter and
client share fate!

A CONUNDRUM

. . .

A: voter and
client share fate!

REPLICA COORDINATION

• Agreement: Every non-faulty state machine receives every command

• Order: Every non-faulty state machine processes the commands it
receives in the same order

All non-faulty state machines receive
all commands in the same order

THE BIG PICTURE

Replica1 Replica2 Replica3 Replica4 Replica5

c

. . . .

THE BIG PICTURE

Replica
1

Replica
2

Replica
3

Replica
4

Replica
5

�

. . . .

c

Replica1 Replica2 Replica3 Replica4 Replica5

THE BIG PICTURE

Replica
1

Replica
2

Replica
3

Replica
4

Replica
5

�

. . . .

Replica1 Replica2 Replica3 Replica4 Replica5

�c

CONSENSUS

