HORROR S TGS

THE PIT AND THE PENDULUM

Lorenzo Alvisi
Cornell University

.

gl A55IC HOR

Ease
of
Programming

e C| ASSIC HARROR STIEIES

Ease

Programming

.
.

Performance

of Performance

SONCURRENGE

SORRECTINESS

- Safety
+ “nothing bad happens”

e Liveness

+ “something good
eventually happens”

No two processes in
the critical section at
the same time

A process that wants
to enter the critical

section will be able to
do so eventually

- Safety

SORRECTINESS

No two processes in

. “nothing bad happens” the critical section at
the same time

SEOUENTIAL OBJECHES

Thanks to Maurice Herlihy
“The Art of Multiprocessor Programming”

 Each object has a state

» Register: the value it stores
» Queue: the sequence of objects it holds

SEOUENTIAL OBJECHES

Thanks to Maurice Herlihy

“The Art of Multiprocessor Programming”

 Each object has a state
» Register: the value it stores

» Queue: the sequence of objects it holds

* Each object has a set of methods
IR eosier: Read/VWrite
» Queue: Eng/Deg/Head

FREAND POST CONDIFICHNS
FOR DEQ Thanks to Maurice Herlihy

« Precondition

» Queue is non-empty 0o

« Postcondition

» Returns first item in queue

« Postcondition

» First item no longer in queue

SEOULENTIAL SPECIFICATICIRNS

Thanks to Maurice Herlihy
* If (precondition)

» the object is in such-and-such-state before
method is called
« Then (postcondition)
» the method will return a particular value

» orthrow a particular exception

* and (postcondition continued)

» the object will be in some other state when
method returns

FREAND POST CONDIFICHNS

FO R D EQ Thanks to Maurice Herlihy

« Precondition

» Queue is non-empty oo

« Postcondition

» Returns first item in queue @

« Postcondition

» First item no longer in queue

FREAND POST CONDIFICHNS BEWULENTIAL SPECIFICATRICINS
FOR DEQ msnero rausice iy ARE AVWESOMESS

« Precondition : ,
* Interactions among methods captured by side-effects

» Queue is empty on object state

» State between method calls is meaningful
» Postcondition
+ Documentation size linear in the number of methods

» Throws Empty exception , e
» Separation of concerns: each method described in

ok isolation
« Postcondition

+ Can add new methods
» Queue state unchanged

» Without changing description of old methods

i EIAT AECIEHE
BONCURRENT SPECIFICATICNESE

* Methods!?

METHODS TAKE TIME

* Documentation?

+ Adding new methods!?

E QgDW(O) -

MIETFHODS TAKERINIS

* If you are Sequential

» Really? Never noticed!

Sl i you are Concurrent
» Method call is not an event

» Method call is an interval

* Concurrent method calls overlap! %

e ©

E Qg?lq(.) void

Method call

AT DOES [T MEANS G
EORRECTNESS

 Sequential

» Object needs meaningful states only
between method calls

« Concurrent

» Because method calls overlap, object may
never be between method calls

A DOES IT MEANFFEIS
EORRECTNESS

» Sequential

» Each method described in isolation

« Concurrent

» Must consider all possible interactions
between concurrent calls

- What if two enq() overlap?

- What if enq() and deq() overlap?

A DOES IT MEANFFEIS
EORRECTNESS

* Sequential

» New methods do not affect existing
methods

« Concurrent

» Everything can potentially interact
with everything else

A\ ABOUT DATABASESE

TRANSACTIONS TAKE TIME

A=GSHEERS

RN " B OUTLINE

2 e S

+ Sequential specification

» A read returns the result of the latest completed write

. Distributed Systems

A=GSHEERS A=GSHEERS

+ Sequential specification + Sequential specification
» A read returns the result of the latest completed write » A read returns the result of the latest completed write
« What if reads and writes can be concurrent? « What if reads and writes can be concurrent?

» A read not concurrent with a write returns the result of
the latest completed write

A=GSHEERS

+ Sequential specification
» A read returns the result of the latest completed write

« What if reads and writes can be concurrent?

» A read not concurrent with a write returns the result of
the latest completed write

B iclii they are concurrent!

S FE REGISTIERS

+ Sequential specification
» A read returns the result of the latest completed write

r3(7?)

« What if reads and writes can be concurrent? o
» A read not concurrent with a write rrge)tums the result

of the latest completed write:®
wa(6)

+ And if they are concurrent! Anything goes!

Time

4

S FE REGISTIERS

+ Sequential specification

» A read returns the result of the latest completed write

« What if reads and writes can be concurrent?

4
the latest completed write

* And if they are concurrent! Anything goes!

RESAREARERESIERSRS

A read not concurrent with a write returns the result of

* Sequential specification
» A read returns the result of the latest completed write

* What if reads and writes can be concurrent? r (5) (
» A read not concurrent with a write returns the result r (6) (6
of the latest completed write ©) G
r r3
—> e
* And if they are concurrent?
A read overlapping with a write returns 4‘—(5>>
either the old or the new value! : W‘(S)I
w2(6)
R
Time

e~ \VVE DO BERE=RE

EREFTLE MORE FORNMZSING

* Execution of a concurrent object modeled

by a history

» a finite sequence of operation invocation and responses
* A history H is sequential if:

» the first event of H is an invocation

» each invocation (but possibly the last) is immediately followed
by a matching response, followed by a matching invocation

* A history that is not sequential is concurrent

SIOMIC REGISTIERS

PEMOCRITLUS

|
—

1

@ & onarvwmy ansiges. aped

! = 09 oo . =

BINEARIZABERSE

(HERLIHY AND WING 1990)

* A history H is linearizable if there exists a

permutation = of the operations in H such that

» For each object o, the sub-history 7o
respects the sequential specification of o

» If the response of operation 01 occurs in H before the
invocation of operation 02, then 07 appears before o9
in

+ in other words, 7 respects the real-time ordering of non-overlapping operations

PO YIPLE: REGISTRERS

r2(?) r3(?)
T‘l(?)
wi(5)
w2(6)
® ° ® ®
ri(5) r2(5) r3(6)
Time

PO YIPLE: REGISTRERS

r2(?) r3(?)

PO YIPLE: REGISTRERS

g W1(5)'

w2z(6)

® ® ® o
ri(5) r2(5) r3(5)

Linearizable registers are called atomic

Time

r2(?) r3(?)
T‘l(?)
wi(5)
w2z(6)
® e o ®
r(5) r2(6) r3(6)
Time

BINEARIZABLE QUECIE

[BN
Qeng(@) Q.deq()
Q.enq(@) Qideqgi)

Time

LINEARIZABLE QUEUE?
Q
L BN
_Qeng(@) Qudeg()
Q.enq(@) Q.deq()

BINEARIZABLE QUECIE

Q

o
‘ Q.eng(@) X Q.deq(@)
Q.eng(@) Qidegit s

Time

BINEARIZABLE QUECIE

Q

‘ Q.enq(@) X

;i Q.deq(.}

Q.eng(@®)

Q.deq(@)

Time

BINEARIZABLE QUECIE

Q
o O

) Q.enq(@) X : Q.deq(2
Q.enq(@) Q.deq()

Time

Time

BINEARIZABLE QUEYUES

[BN
) Q.enq(@) : Q.deq(2
Q.enq(@ Q.deq()

Time

BINEARIZABLE QUEYUES

Q

‘ Q.enq(@) X

Q.enq(@

Time

BINEARIZABLE QUEYUES
Q

o
|:| ‘ Q.enq(@)) ; Q.deq(2
- Q.enq(@) Q.deq(@)

Time

BEOUENTIAL CONSISTEN G

(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES
MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691)

+ A history H is sequentially consistent
if there exists a permutation 7 of the
operations in H such that

» 7o respects the sequential specification of each object o

» If the response for operation 0y at p; occurs in H before the
invocation for operation 05 at p;, then 01 appears before oo in 7

BEOUENTIAL CONSISTEN G BEOUENTIAL CONSISTEN G

(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES (LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES
MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691) MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691)
	[[
1 [1 [
1		1		
[| 1 [| [| 1 [|

BEOUENTIAL CONSISTEN G BEOUENTIAL CONSISTEN G

(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES (LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES
MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691) MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691)

- -

BEOUENTIAL CONSISTEN G BEOUENTIAL CONSISTEN G

(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES (LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES
MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691) MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691)
| |
| | [| | | [|
| 1 [| | 1 [|
[| . | [| [| [|

BEOUENTIAL CONSISTEN G BEOUENTIAL CONSISTEN G

(LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES (LAMPORT "HOW TO MAKE A MULTIPROCESSOR COMPUTER THAT CORRECTLY EXECUTES
MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691) MULTIPROCESS PROGRAMS', [EEETOC C-28,9 (SEPT. 1979), 690-691)
| |
| | [| | | [|
| 1 [| | 1 [|
[| . | [| [| [|

Temporal order of non-overlapping

operations is preserved only for

operations by the same thread

AL E

wi(5) 5 ri(?)

/b 0\ .
only acceptable value

Latest Earliest r(7) under linearizability

but under sequential consistency...

BEINK GLOBAL ACT LOGEIR

* A property P of a concurrent system is
local
if the system satisfies P

whenever each individual object satisfies P

» Given two objects 07 and oy each satisfying B the
composite object [01, 09] satisfies P

AL E

wi(5) R g ri(?)

...this is a valid permutation of the same history

BINIEARZ /A B
B LOCAL PROFERIRS

Theorem
A history H is linearizable iff

i€ dch object o, I restrictediEoTie
operations in o Is linearizable

* Because linearizability is a local property,
objects can be implemented independently

VWhat about
sequential consistency?

If=E CASE@E
iEsE FIFO OUEYES

Time

If=E CASE@E
iEsE FIFO OUEYES

E «~P.eng(@) «~Q.enq(@) «~P.deq(@)

B

~Q.enqg(@)~

«~Peng(@) «Q.deq(@)

Time

If=E CASE@E
iEsE FIFO OUEYES

E «~P.eng(@) «~Q.enq(@) «~P.deq(@)

B

~Q.enqg(@)~

«~Peng(@) «Q.deq(@)

Time

If=E CASE@E If=E CASE@E
iEsE FIFO OUEYES iEsE FIFO OUEYES

m «P. v @t (@ > ~P.deq(@)

«~Q.eng(@)r «Q.eng(@) «Q.deq(@) , Not Sequentially Consistent!

] o @I Peng(@)+ ~Q.dea(@)

Time Time

I EOIRE M

Sequential Consistency

s not composable BREAK

,an execution involving a collection of sequentially
consistent objects may not be sequentially consistent

=t BIG PICTERE =it BIG PICTERE

client-specific

command identifier :
client c

client ¢
[

<c, cid, op>
<cid, result>

Server Server

o IEURE MOBDEE

Byzantine

“A distributed system is one in which the
failure of a computer you didn't even
know existed can render your own

computer unusable.”

Leslie Lamport

ifi=IE BIG PIC TS

client

€
‘ <cid, result>

Server

ifi=IE BIG PIC TS

client c :

ifi=IE BIG PIC TS

client c

ifi=IE BIG PIC TS

OO 000000
U CHORGRGRORGROLC) (|
OlQlQlQlO lQ lQ lO lO lQ lO

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

hi
- B State machine

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of

state transitions
Commands

r -/
Chemts\:QC [\l
e

State machines

|

l\l\l

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

- o e State machines

STE MACHINE REPLICARIGSS

|. Make server deterministic (state machine)

2. Replicate server

3. Ensure correct replicas step through the same sequence of
state transitions

4. Vote on replica outputs for fault-tolerance

o

State machines

Clients \ L
b —

Voter

N

e CONUNDIRE e CONUNDIRE

ik

A: voter and A: voter and
client share fate! client share fate!

FEFCIC A COORDINANSS ifi=IE BIG PIC TS

00000000
All non-faulty state machines receive JeNelererere @ ¢
B0 0000000 .

all commands in the same order
[L

* Agreement: Every non-faulty state machine receives every command

* Order: Every non-faulty state machine processes the commands it
receives in the same order

iE=iE BIG PICTUSS iE=iE BIG PICTUSS

) &) (e < @ (
e () @ @) (o) (
@)) ¢ @) (
R | . | e

