
Introduction to
Neural Machine Translation (2/3)

Marine Carpuat
Computer Science

University of Maryland

Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism

Neural Networks as Computation Graphs

Example & figures by Philipp Koehn

Computation Graphs Make Prediction Easy:
Forward Propagation

Computation Graphs Make Prediction Easy:
Forward Propagation

Stochastic Gradient Descent

w = 0
for I iterations

for each labeled pair x, y in the data

w = w − μ
𝑑error(w, x, y)

𝑑w

Start with some initial
parameter values

Go through the training data
one example at a time

Take a step down the
gradient

Computation Graphs Make Training Easy:
Computing Error

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Updating Parameters

Computation Graph: A Powerful Abstraction

• To build a system, we only need to:
• Define network structure
• Define loss
• Provide data
• (and set a few more hyperparameters to control training)

• Given network structure
• Prediction is done by forward pass through graph (forward propagation)
• Training is done by backward pass through graph (back propagation)
• Based on simple matrix vector operations

• Forms the basis of neural network libraries
• Tensorflow, Pytorch, mxnet, etc.

Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism

Language Modeling

• Goal: compute the probability of a sentence or sequence of words
P(E) = P(e1,e2,e3,e4,e5…en)

• Related task: probability of an upcoming word
P(e5|e1,e2,e3,e4)

• A model that computes either of these:
P(E) or P(en|e1,e2…en-1)

is called a language model.

Zipf’s Law

Zipf’s Law

• Even in a very large corpus, there
will be a lot of infrequent words

• The same holds for many other
levels of linguistic structure

• NLP/MT challenge: we need to be
able to make predictions for things
we have rarely or never seen

Toward a Neural Language Model

Figures by Philipp Koehn (JHU)

Representing Words

• “one hot vector”

dog = [0, 0, 0, 0, 1, 0, 0, 0 …]

cat = [0, 0, 0, 0, 0, 0, 1, 0 …]

eat = [0, 1, 0, 0, 0, 0, 0, 0 …]

• That’s a large vector! practical solutions:
• limit to most frequent words (e.g., top 20000)

• cluster words into classes

• break up rare words into subword units

Language Modeling with
Feedforward Neural Networks

Map each word into a
lower-dimensional real-valued space

using shared weight matrix C

Embedding layer

Bengio et al. 2003

An Output Layer to Predict Words

• Network will output a probability for each word in the vocabulary V

• Step 1: compute a score for each word in V 𝑠 = 𝑊𝑥 + 𝑏

• Step 2: turn scores into probabilities using softmax function

𝑝 = softmax(𝑠)

Where the probability of the j-th word in V is

𝑠 ∈ ℝ|𝑉|
W ∈ ℝ|𝑉|×𝑁 𝑏 ∈ ℝ|𝑉|

𝑝𝑗 =
𝑒𝑠𝑗

 𝑗 𝑒
𝑠 𝑗

Estimating Model Parameters

• Intuition: a model is good if it gives high probability to existing word
sequences

• Training examples:
• sequences of words in the language of interest

• Error/loss: negative log likelihood
• At the corpus level error 𝜆 = −

𝐸 in corpus log 𝑃λ(𝐸)

• At the word level error 𝜆 = − log𝑃λ(𝑒𝑡|𝑒1 …𝑒𝑡−1)

Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003

Word Embeddings: a useful by-product of
neural LMs

• Words that occurs in similar
contexts tend to have similar
embeddings

• Embeddings capture many
usage regularities

• Useful features for many NLP
tasks

Word Embeddings

Word Embeddings

Word Embeddings Capture Useful Regularities

Morpho-Syntactic
• Adjectives: base form vs. comparative

• Nouns: singular vs. plural

• Verbs: present tense vs. past tense

[Mikolov et al. 2013]

Semantic

• Word similarity/relatedness

• Semantic relations

• But tends to fail at distinguishing
• Synonyms vs. antonyms

• Multiple senses of a word

Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003

Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn

Formalizing our Recurrent Language Model

Figure by Graham Neubig

Practical Training Issues

• Process examples as a
“minibatch”
• yields better models faster

• Vanishing/Exploding Gradients
• can be handled with variant of

RNN architecture (Long Short Term
Memory Networks)

Figure by Graham Neubig

What do Recurrent Language Models
Learn?

Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

• Can capture (some) long-distance dependencies

After much economic progress over the years, the country has…

The country, which has made much economic progress over the years, still has…

Deeper Models

Recurrent Neural Language Models
Summary
• A powerful tool for modeling language

• Captures generalizations over words via embeddings

• Captures some long-distance dependencies

• Many tricks required to train and predict efficiently

• Helps performance in hard extrinsic tasks
• speech recognition (Mikolov et al. 2011)

• machine translation (Devlin et al. 2014)

Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism

From Language Modeling to Translation

• Language models give us P(E)
• Where E is a sentence in a language, say English

• A translation model can be defined as P(E|F)
• Where E is an English sentence

• And F is a French sentence

RNN Encoder-Decoder Translation Model

Training

• Same as for RNN language modeling

• Training examples: pairs of sentences (E,F)

• Loss function
• Negative log-likelihood of training data

• Total loss for one example (sentence) = sum of loss at each time step (word)

Note that training loss differs from
evaluation metric (BLEU)

Generating Output

• We have a model P(E|F), how can we generate translations?

• 2 methods

• Sampling: generate a random sentence according to P(E|F)

• Argmax: generate sentence with highest probability

 𝐸 = argmax𝐸𝑃(𝐸|𝐹)

Ancestral Sampling

• Randomly generate words one
by one

• Until end of sentence symbol

• Done!

Greedy search

• One by one, pick single highest
probability word

• Problems
• Often generates easy words first

• Often prefers multiple common
words to rare words

Example by Graham Neubig

