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Roadmap

e Evaluating machine translation
* Introduction to neural networks

* Modeling sequences of words
with neural language models

* Translating with encoder-

decoder models
e Attention mechanism
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Neural Networks as Computation Graphs
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Example & figures by Philipp Koehn




Computation Graphs Make Prediction Easy:
Forward Propagation




Computation Graphs Make Prediction Easy:
Forward Propagation
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Stochastic Gradient Descent

" w=0

Start with some initial
parameter values

—

for | iterations
for each labeled pair x, y in the data
derror(w, X, y)

W=w-—|

Go through the training data
one example at a time

—

dwW

Take a step down the
gradient




Computation Graphs Make Training Easy:
Computing Error

qngmond




Computation Graphs Make Training Easy:
Computing Gradients
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Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node
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tation Graphs Make Training Easy:
ting Gradients
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ing Gradients

’ 3.
) )

0171 ] [
1(J —a0308='[
'17 __ MEX )3‘-’8_

[0382 .00712]@ _2.0]
04)4 .0424]
°]lu

[m)] { [.0424]

[.0277] [.235]



Computation Graphs Make Training Easy:
Updating Parameters
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Computation Graph: A Powerful Abstraction

* To build a system, we only need to:
* Define network structure
* Define loss

* Provide data
* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
* Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.
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* Evaluating machine translation T T LT
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Recurrent NN

* Introduction to neural networks
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* Modeling sequences of words
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Language Modeling

* Goal: compute the probability of a sentence or sequence of words
P(E) = P(e,e,,e; €, ec...e)

* Related task: probability of an upcoming word
Plec|e,,e,e5,e,)

* A model that computes either of these:
P(E) or P(e,|e,e,...e )
is called a language model.



Frequency

Zipt's Law
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Zipf’s Law

Word frequency vs. rank, log axes * Evenin a very large corpus, there

7
0 will be a lot of infrequent words
10° .
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2 1o * The same holds for many other
S s levels of linguistic structure
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Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

* “one hot vector”

dog =[0, 0,0, 0,1, 0, 0, 0.
cat =[ 9, 0, 9, 0, 0, 0, 1, O .
eat =[ 0, 1, 0, 0, 0, ©, 0, O .

* That’s a large vector! practical solutions:
* |limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units



_anguage Modeling with

~eedforward Neural Networks
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An Output Layer to Predict Words

* Network will output a probability for each word in the vocabulary V

e Step 1: compute a score for each word in V s=Wx+0b>b
/ \
14 14

* Step 2: turn scores into probabilities using softmax function

p = softmax(s)

e’J

Zjesj

Where the probability of the j-th word in V is pj =



Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
* sequences of words in the language of interest

* Error/loss: negative log likelihood

* At the corpus level error(1) = —); log P, (E)

E In corpus

* At the word level error(4) = —log P, (e;|e ...e;_1)



_anguage Modeling with
~eedforward Neural Networks
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Word Embeddings: a useful by-product of

neural LMs

Word

Embedding
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 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks



Word Embeddings
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Word Embeddings
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Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural e Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
* Synonyms vs. antonyms
* Multiple senses of a word
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_anguage Modeling with
~eedforward Neural Networks

©0000000®
000000000
Q00000000

000008000
00 0Q0QRO0O

O0000000O0 OC0O0O@0000O0
0O0O0OQO0Q0OO

00000000

O0000O0O00OO
00000000
(ool NoNoNoNeRoNe]

000000000
000000000
[elleNoNoNeNe ol Neol

)y 0 [ O

Bengio et al. 2003



Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn



Formalizing our Recurrent Language Model

(a) A single RNN time step (b) An unrolled RNN

tanh —»

tanh »{h,

my =M., ,

% {tanh(Wmhmt + Whnhi—1 + bh.) 2,
t i

0 otherwise.

p; = softmax(Wysh; + bs).

Figure by Graham Neubig



Practical Training Issues

<s> that is an example * Process examples dS d
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What do Recurrent Language Models
Learn?

Cell sensitive to position in line:
e sole im eireossing of the Berezina lies in the fact

proved the fallacy of all the plans for

and the soundness of the only possible

and the general mass of the army

follow the enemy up. The French crowd ?

ng speed and all its energy was directed

d like a wounded animal and it was ilpu&sgk

was shown not so much by the arrangements

what took place at the bridges. When the mﬂﬁglll
'S, people from Moscow and women with children

port, all--carried on by vis inertiae--
ts and into the ice-covered water and didinoeEn

Cell that turns on inside quotes:

Figure from Karpathy 2015



What do Recurrent Language Models
Learn?

Cell that turns on inside comments and quotes:

Cell that robustly activates inside if statements:

({ c
IF_SIGPENDING) ;

L — Figure from Karpathy 2015



What do Recurrent Language Models
Learn?

* Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..



Deeper Models
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Recurrent Neural Language Models
Summary

* A powerful tool for modeling language
e Captures generalizations over words via embeddings
* Captures some long-distance dependencies

* Many tricks required to train and predict efficiently

* Helps performance in hard extrinsic tasks
e speech recognition (Mikolov et al. 2011)
* machine translation (Devlin et al. 2014)



Roadmap

e Evaluating machine translation
* Introduction to neural networks

* Modeling sequences of words
with neural language models

* Translating with encoder-
decoder models

e Attention mechanism
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From Language Modeling to Translation

e Language models give us P(E)
* Where E is a sentence in a language, say English

* A translation model can be defined as P(E|F)
* Where E is an English sentence
 And Fis a French sentence



RNN Encoder-Decoder Translation Model
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Training
e Same as for RNN language modeling
* Training examples: pairs of sentences (E,F)

* Loss function
* Negative log-likelihood of training data
 Total loss for one example (sentence) = sum of loss at each time step (word)



Note that training loss differs from
evaluation metric (BLEU)

N-gram overlap between machine translation output and reference translation
Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

4

output-length , o 1

BLEU = min (1 P & > ( | |p1‘eC1510nj)'J‘
i=1

' reference-length

Typically computed over the entire corpus, not single sentences



Generating Output

* We have a model P(E|F), how can we generate translations?

* 2 methods
* Sampling: generate a random sentence according to P(E|F)

* Argmax: generate sentence with highest probability

Py

E = argmax;P(E|F)



Ancestral Sampling

 Randomly generate words one
by one

while yj-1 1= “</s>":
yi ~ Plyi | X, y1, ..., yj1)

e Until end of sentence symbol

* Done!



Greedy search

* One by one, pick single highest
probability word

* Problems
e Often generates easy words first

e Often prefers multiple common
words to rare words

while yi1 = “</s>":

yj = argmax P(y; | X, y1, ..

i Vi)
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