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Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words 
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism



Neural Networks as Computation Graphs

Example & figures by Philipp Koehn



Computation Graphs Make Prediction Easy:
Forward Propagation 
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Stochastic Gradient Descent

w = 0
for I iterations

for each labeled pair x, y in the data

w = w − μ
𝑑error(w, x, y)

𝑑w

Start with some initial 
parameter values

Go through the training data 
one example at a time

Take a step down the 
gradient



Computation Graphs Make Training Easy:
Computing Error 



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Updating Parameters



Computation Graph: A Powerful Abstraction

• To build a system, we only need to:
• Define network structure
• Define loss
• Provide data
• (and set a few more hyperparameters to control training)

• Given network structure
• Prediction is done by forward pass through graph (forward propagation)
• Training is done by backward pass through graph (back propagation)
• Based on simple matrix vector operations

• Forms the basis of neural network libraries
• Tensorflow, Pytorch, mxnet, etc.



Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words 
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism



Language Modeling

• Goal: compute the probability of a sentence or sequence of words
P(E) = P(e1,e2,e3,e4,e5…en)

• Related task: probability of an upcoming word
P(e5|e1,e2,e3,e4)

• A model that computes either of these:
P(E)     or     P(en|e1,e2…en-1)  

is called a language model.



Zipf’s Law



Zipf’s Law

• Even in a very large corpus, there 
will be a lot of infrequent words

• The same holds for many other 
levels of linguistic structure

• NLP/MT challenge: we need to be 
able to make predictions for things 
we have rarely or never seen



Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

• “one hot vector”

dog = [ 0, 0, 0, 0, 1, 0, 0, 0 …]

cat = [ 0, 0, 0, 0, 0, 0, 1, 0 …]

eat = [ 0, 1, 0, 0, 0, 0, 0, 0 …]

• That’s a large vector! practical solutions:
• limit to most frequent words (e.g., top 20000)

• cluster words into classes

• break up rare words into subword units



Language Modeling with
Feedforward Neural Networks

Map each word into a
lower-dimensional real-valued space

using shared weight matrix C

Embedding layer

Bengio et al. 2003



An Output Layer to Predict Words

• Network will output a probability for each word in the vocabulary V

• Step 1: compute a score for each word in V 𝑠 = 𝑊𝑥 + 𝑏

• Step 2: turn scores into probabilities using softmax function

𝑝 = softmax(𝑠)

Where the probability of the j-th word in V is

𝑠 ∈ ℝ|𝑉|
W ∈ ℝ|𝑉|×𝑁 𝑏 ∈ ℝ|𝑉|

𝑝𝑗 =
𝑒𝑠𝑗

  𝑗 𝑒
𝑠 𝑗



Estimating Model Parameters

• Intuition: a model is good if it gives high probability to existing word 
sequences

• Training examples:
• sequences of words in the language of interest

• Error/loss: negative log likelihood 
• At the corpus level  error 𝜆 = − 

𝐸 in corpus log 𝑃λ(𝐸)

• At the word level error 𝜆 = − log𝑃λ(𝑒𝑡|𝑒1 …𝑒𝑡−1)



Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003



Word Embeddings:  a useful by-product of 
neural LMs

• Words that occurs in similar 
contexts tend to have similar 
embeddings

• Embeddings capture many 
usage regularities

• Useful features for many NLP 
tasks



Word Embeddings



Word Embeddings



Word Embeddings Capture Useful Regularities

Morpho-Syntactic
• Adjectives: base form vs. comparative

• Nouns: singular vs. plural

• Verbs: present tense vs. past tense

[Mikolov et al. 2013]

Semantic 

• Word similarity/relatedness

• Semantic relations

• But tends to fail at distinguishing
• Synonyms vs. antonyms 

• Multiple senses of a word



Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003



Language Modeling 
with Recurrent Neural Networks

Figure by Philipp Koehn



Formalizing our Recurrent Language Model

Figure by Graham Neubig



Practical Training Issues

• Process examples as a 
“minibatch”
• yields better models faster

• Vanishing/Exploding Gradients
• can be handled with variant of 

RNN architecture (Long Short Term 
Memory Networks)

Figure by Graham Neubig



What do Recurrent Language Models 
Learn?

Figure from Karpathy 2015
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What do Recurrent Language Models 
Learn?

• Can capture (some) long-distance dependencies

After much economic progress over the years, the country has…

The country, which has made much economic progress over the years, still has…



Deeper Models



Recurrent Neural Language Models
Summary
• A powerful tool for modeling language

• Captures generalizations over words via embeddings

• Captures some long-distance dependencies

• Many tricks required to train and predict efficiently

• Helps performance in hard extrinsic tasks
• speech recognition (Mikolov et al. 2011)

• machine translation (Devlin et al. 2014)



Roadmap

• Evaluating machine translation

• Introduction to neural networks

• Modeling sequences of words 
with neural language models

• Translating with encoder-
decoder models

• Attention mechanism



From Language Modeling to Translation

• Language models give us P(E)
• Where E is a sentence in a language, say English

• A translation model can be defined as P(E|F)
• Where E is an English sentence

• And F is a French sentence



RNN Encoder-Decoder Translation Model



Training

• Same as for RNN language modeling

• Training examples: pairs of sentences (E,F)

• Loss function
• Negative log-likelihood of training data

• Total loss for one example (sentence) = sum of loss at each time step (word)



Note that training loss differs from 
evaluation metric (BLEU)



Generating Output

• We have a model P(E|F), how can we generate translations?

• 2 methods

• Sampling: generate a random sentence according to P(E|F)

• Argmax: generate sentence with highest probability

 𝐸 = argmax𝐸𝑃(𝐸|𝐹)



Ancestral Sampling

• Randomly generate words one 
by one

• Until end of sentence symbol

• Done!



Greedy search

• One by one, pick single highest 
probability word

• Problems
• Often generates easy words first

• Often prefers multiple common 
words to rare words



Example by Graham Neubig


