Introduction to
Neural Machine Translation (2/3)

N 4
Marine Carpuat 5 %
Computer Science 18 / 56
University of Maryland - '/YXQ

4RYLB

Roadmap

e Evaluating machine translation
* Introduction to neural networks

* Modeling sequences of words
with neural language models

* Translating with encoder-

decoder models
e Attention mechanism

<5 the house 15 big -
: ' Input Word
L J o B — Embeddings
SRENean =
Iy I O O O ot
-J'-J'-J'-J:-J'- —
VYYD oo
R 8y REY REBJ RBY A
Hidden State
qu 4! 4! 43 *l
i | | [] - [Qutput Word
L il e [PSS) — Predictions
Error
Glven
Output Words
Output Word

Embedding

Neural Networks as Computation Graphs

sig mmd

Example & figures by Philipp Koehn

Computation Graphs Make Prediction Easy:
Forward Propagation

Computation Graphs Make Prediction Easy:
Forward Propagation

1.0]1
0.0

Stochastic Gradient Descent

" w=0

Start with some initial
parameter values

—

for | iterations
for each labeled pair x, y in the data
derror(w, X, y)

W=w-—|

Go through the training data
one example at a time

—

dwW

Take a step down the
gradient

Computation Graphs Make Training Easy:
Computing Error

qngmond

Computation Graphs Make Training Easy:
Computing Gradients

dsum __ do s I

Y ..
dorod — &5 — a2 = g =4 |prod

dsum __ do __ d :

TR :
dprod — diy diy /] + 12 = 1, dig 1 sum

dE _ dE dByg
dA — dB dA

dsigmoid __ do __ (—I(T(l)
dsum =~ di =~ di "

= o(1)(1 — (f('/',))> sigmoid

__do

dsigmoid ~ dz

=4t —i)=t—i 12}

Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node

J() @
(l(] e """
{2 9} pro 12, 41

[.90[« L

tation Graphs Make Training Easy:
ting Gradients

3.18 " OC —2.0
[1.18] m 0424], [.0424] Gll .

[.765] M [.180] x [2 [.0424]
0277] | A 235

Ccom
Ccom

OUL

OUL

il] @
° 9 st e 0260 _ 0308 0

l'_1

ation Graphs Make Training Easy:
ing Gradients

’ 3.
))

0171] [
1(J —a0308='[
'17 __ MEX)3‘-’8_

[0382 .00712]@ _2.0]
04)4 .0424]
°]lu

[m)] { [.0424]

[.0277] [.235]

Computation Graphs Make Training Easy:
Updating Parameters

0171 ()
e —.0308

L0382 .00712]

017 1
L 3()8

@ [.0424]

Computation Graph: A Powerful Abstraction

* To build a system, we only need to:
* Define network structure
* Define loss

* Provide data
* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
* Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.

Roadmap

* Evaluating machine translation T T LT

Left-to-Right
Recurrent NN

* Introduction to neural networks

Right-to-Left
Recurent NN

* Modeling sequences of words
with neural language models

Attention

Input Context

Hidden State

* Translating with encoder-
decoder models

Qutput Word
Pradictions

Error

Glven
Output Words

e Attention mechanism

Output Word
Embedding

Language Modeling

* Goal: compute the probability of a sentence or sequence of words
P(E) = P(e,e,,e; €, ec...e)

* Related task: probability of an upcoming word
Plec|e,,e,e5,e,)

* A model that computes either of these:
P(E) or P(e,|e,e,...e)
is called a language model.

Frequency

Zipt's Law

1800000

Word frequency vs. rank

1600000t
1400000t
1200000¢
1000000¢
800000}
600000
400000
200000
0

-

-

0

20000 40000 60000 80000 100000
Rank

Zipf’s Law

Word frequency vs. rank, log axes * Evenin a very large corpus, there

7
0 will be a lot of infrequent words
10° .
10°
2 1o * The same holds for many other
S s levels of linguistic structure
S 10
10°
101 * NLP/MT challenge: we need to be
10° - able to make predictions for things
10° 100 10° 10° 10° 107 we have rarely or never seen

Rank

Toward a Neural Language Model

Figures by Philipp Koehn (JHU)

Representing Words

* “one hot vector”

dog =[0, 0,0, 0,1, 0, 0, 0.
cat =[9, 0, 9, 0, 0, 0, 1, O .
eat =[0, 1, 0, 0, 0, ©, 0, O .

* That’s a large vector! practical solutions:
* |limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units

_anguage Modeling with

~eedforward Neural Networks

(Map each word into a

O00O0O0O0O0O®
00 0Qe0Q00 0
000000000

lower-dimensional real-valued space
using shared weight matrix C

0O0000®000
0000 Q000
O00000O00O0

O0OO0OOO0OOO
00 000Q00O0
O0O®@00000O0

O0000000OO0
00 000Q@000
[elleNoNeNeoNeRoN Nol

Embedding Iayer1

0000000
O000Q00000OO0
00000000

Bengio et al. 2003

An Output Layer to Predict Words

* Network will output a probability for each word in the vocabulary V

e Step 1: compute a score for each word in V s=Wx+0b>b
/ \
14 14

* Step 2: turn scores into probabilities using softmax function

p = softmax(s)

e’J

Zjesj

Where the probability of the j-th word in V is pj =

Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
* sequences of words in the language of interest

* Error/loss: negative log likelihood

* At the corpus level error(1) = —); log P, (E)

E In corpus

* At the word level error(4) = —log P, (e;|e ...e;_1)

_anguage Modeling with
~eedforward Neural Networks

©0000000®
000000000
Q00000000

000008000
00 0Q0QRO0O

O0000000O0 OC0O0O@0000O0
0O0O0OQO0Q0OO

00000000

O0000O0O00OO
00000000
(ool NoNoNoNeRoNe]

000000000
000000000
[elleNoNoNeNe ol Neol

)y 0 [O

Bengio et al. 2003

Word Embeddings: a useful by-product of

neural LMs

Word

Embedding

00O
O 0O
O 0O
00O

e Words t

nat occurs in similar

contexts tend to have similar

embedd

INgs

 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks

Word Embeddings

surrounding T reduced s
opposite Linited
X equal
imilar
foxrward — related
‘acnnmmr okE - particular
straight
'gghi»d 'Pw back open
g
ww growing
. developing
sent
supporting
speaking stabared containing 9 ptom}'m
t'&:ﬂ cxBREINg oriRgaVing
Living giving lm#"
—— O
educated ”d._ s olding
’ 'ﬂ\he(“Wu‘ m" m:g
ing md charyed equivalent Gteing
ed applied : W‘fﬁ"! i
g ’ v ING ratwrning ending
devel E,w dedicavdtached
. b‘ud o:lmeehd closed
wishe X

L
schvoyled - “amagmed bing

lace
cover tumm

start

Word Embeddings

cable
m media
aally e Eefevisigpesg somic
. enteydadeneet,
growing jletdng ¥
developing news ddd
talk
supporxting . 2
.] Ye
:onta:int%\lg}‘g prodat iy opening
g crﬂlmg . scoxi .ng
3 '!! _giving ng
’ g ; aching
pexfoxming u%ﬁm —_—
oz ived
dgdting passing Proadcast
o s iming 2
dxiving plaaming

yum hit

Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural e Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
* Synonyms vs. antonyms
* Multiple senses of a word

s\ o

QUEEN UNCLE
/7 QUEEN

KING

AUNT

KING

_anguage Modeling with
~eedforward Neural Networks

©0000000®
000000000
Q00000000

000008000
00 0Q0QRO0O

O0000000O0 OC0O0O@0000O0
0O0O0OQO0Q0OO

00000000

O0000O0O00OO
00000000
(ool NoNoNoNeRoNe]

000000000
000000000
[elleNoNoNeNe ol Neol

)y 0 [O

Bengio et al. 2003

Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn

Formalizing our Recurrent Language Model

(a) A single RNN time step (b) An unrolled RNN

tanh —»

tanh »{h,

my =M., ,

% {tanh(Wmhmt + Whnhi—1 + bh.) 2,
t i

0 otherwise.

p; = softmax(Wysh; + bs).

Figure by Graham Neubig

Practical Training Issues

<s> that is an example * Process examples dS d

. <§> th'IS |ls ano'ther </:5,> ”minib atch”
an_UL Iool*mp Iool;up Iool;up lool;up Iool;up .
X o 2L ok oL * yields better models faster

Recurrence: RI\IIN —» RI\IIN — RNN — RNN - RNN

Estimate: softmax softmax softmax softmax soﬂmax o Van|Sh|ng/EXp|Od|ng Gradlents
I | | | [
Loss ot?t T °§§(h O%iﬁwpue offsg e can be handled with variant of
this is another </S> </s> .
) D) N M RNN architecture (Long Short Term
Mgsking: :—» (; —> 0] —v o) .-> ? o, [0 Memory Networks)
i & & & &
& [] @ ®
Sum Time Steps: W
v
Final Loss

Figure by Graham Neubig

What do Recurrent Language Models
Learn?

Cell sensitive to position in line:
e sole im eireossing of the Berezina lies in the fact

proved the fallacy of all the plans for

and the soundness of the only possible

and the general mass of the army

follow the enemy up. The French crowd ?

ng speed and all its energy was directed

d like a wounded animal and it was ilpu&sgk

was shown not so much by the arrangements

what took place at the bridges. When the mﬂﬁglll
'S, people from Moscow and women with children

port, all--carried on by vis inertiae--
ts and into the ice-covered water and didinoeEn

Cell that turns on inside quotes:

Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

Cell that turns on inside comments and quotes:

Cell that robustly activates inside if statements:

({ c
IF_SIGPENDING) ;

L — Figure from Karpathy 2015

What do Recurrent Language Models
Learn?

* Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..

Deeper Models

v

v

L]
4

> 1D

@

A4

v

Shallow

Input

Hidden
Layer

Output

v
A4

eJe[Je[e
¢ Je[Je[]e[]
sJeJeJeO

Deep Stacked

Input

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output

L] L]
4

L]
4

W

v

v v 9

Deep Transition

Input

Hidden

. Layer 1

' Hidden

Layer 2

Hidden
Layer 3

Output

Recurrent Neural Language Models
Summary

* A powerful tool for modeling language
e Captures generalizations over words via embeddings
* Captures some long-distance dependencies

* Many tricks required to train and predict efficiently

* Helps performance in hard extrinsic tasks
e speech recognition (Mikolov et al. 2011)
* machine translation (Devlin et al. 2014)

Roadmap

e Evaluating machine translation
* Introduction to neural networks

* Modeling sequences of words
with neural language models

* Translating with encoder-
decoder models

e Attention mechanism

''''''

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recumant NN

Attention

Input Context

Hidden State

Qutput Word
Predictions

Error

Glven
Output Words

Output Word
Embedding

From Language Modeling to Translation

e Language models give us P(E)
* Where E is a sentence in a language, say English

* A translation model can be defined as P(E|F)
* Where E is an English sentence
 And Fis a French sentence

RNN Encoder-Decoder Translation Model

Encoder
0 o RNN® o RNN®
lookup® | | lookup®
f, f,

Decoder
p(e)l p(e)2
softmax® | | softmax®

T

T

Lol RNN© |/ RNN© > - -

F

softmax® | :

—/RNN®]| |

T

!

I i
looku p(e> looku p(e)
} !
e0 e1

lookup® | :

!

Training
e Same as for RNN language modeling
* Training examples: pairs of sentences (E,F)

* Loss function
* Negative log-likelihood of training data
 Total loss for one example (sentence) = sum of loss at each time step (word)

Note that training loss differs from
evaluation metric (BLEU)

N-gram overlap between machine translation output and reference translation
Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)

4

output-length , o 1

BLEU = min (1 P & > (| |p1‘eC1510nj)'J‘
i=1

' reference-length

Typically computed over the entire corpus, not single sentences

Generating Output

* We have a model P(E|F), how can we generate translations?

* 2 methods
* Sampling: generate a random sentence according to P(E|F)

* Argmax: generate sentence with highest probability

Py

E = argmax;P(E|F)

Ancestral Sampling

 Randomly generate words one
by one

while yj-1 1= “</s>":
yi ~ Plyi | X, y1, ..., yj1)

e Until end of sentence symbol

* Done!

Greedy search

* One by one, pick single highest
probability word

* Problems
e Often generates easy words first

e Often prefers multiple common
words to rare words

while yi1 = “</s>":

yj = argmax P(y; | X, y1, ..

i Vi)

0 1 1
1.0
a /s>
0.15
1.0 ¥
0'8 ubn /S> g
1.0 ;
/S>>
1.0

/S>

Example by Graham Neubig

