EONSENSEE

decide
—_

propose
—_—

Validity — If a process decides v, then v was proposed by some process
* Agreement — No two correct process decide differently
* Integrity — No correct process decides twice

* Termination — Every correct process eventually decides some value

OF COURSE!

L \

Mi=SSAGES TAKE RIS

Does it matter how much?

ANBTEL O TNCHRONOUS SYSREME

centralized clock
Should it matter for NOES

CO RRECTN ESS? NO upper bound on the relative speed of processes

N O upper bound on message delivery time

Assumptions are
vulnerabilities!

GREAT WITHIN
Paxos DATACENTERS!

Always safe

Ready to pounce O

on liveness '
Google Cloud aa oSOl

...where, besides, it may be ok to
assume more of the network

D. Ports et al.

Designing distributed systems unisng approximate synchrony in datacenter networks
NSDI'15

TAKING STOCK TANINGESHROIC <

* We can define a strong notion of correctness for * We can define a strong notion of correctness for
concurrent objects concurrent objects

* We can use consensus to achieve it in a * We can use consensus to achieve it in a
distributed setting distributed setting
» Impossible? HAl' Nothing is impossible! » Impossible? HA!' Nothing' is impossible!

TExceptions include:
v cappuccino after lunch or dinner

v actually, asynchronous consensus

I CanlanAd hantins (CAavmaang At FAanthall

ol [VWHAT ABOUTFGESE
REREICATED SYSTIERISE

@
WHAT DOES , A, MEAN?

Werner Vogels, CTO Amazon ' v \ —

“An important observation is that in larger ny; .
- bz
T f’.mal 0

distributed-scale systems, network partitions are a
given; therefore, consistency and availability

cannot be achieved at the same time.”
http://www.alithingsdistributed.com/2008/ | 2/eventually_consistenthtml k

Farewell consistency, we hardly knew ve...

REIEC AR DIEEMiEES

Consistency

linearizability

Partition

Avallability Tolerance

for updates

Eric Brewer's CAP Theorem

“You can have at most two of C, A, and
P for any shared data system”

@
WHAT DOES , A, MEAN?

“No system where P is possible can at
all times guarantee both C and A"

Le.

if your network is highly reliable (and fast), so that
P is extremely rare, you can aim for both C and A

Google Spanner

EEO-REPLICATED SYSIFEMME EVENTUAL CONSISTENGRS

* Facebook, Twitter; Amazon aim
for ALPS

» Availability

* Replicas are guaranteed to converge

» updates performed at one replica are eventually seen
» low Latency by all others

o0 oerance » if no more updates, replicas eventually reach the same

» Scalability state

+ What about consistency?

» Tension (you guessed it)
between performance and
ease of programming

If no new updates are made to an object, eventually
all accesses will return its last updated value

GOSSIP

» |n each round, a

replica exchanges n
what it knows with
another replica chosen 9
uniformly at random G
QL
£
* Like an epidemic, it is 32
robust and efficient
I/n

* “Infection” completes
in O(log n) rounds

105 USING E@

Domain Name Service (DNS)
Facebook

* Amazon

o Twitter

Bayou (1995)

Clearinghouse (1987)

Time

105 USING E@

Domain Name Service (DNS)

Facebook
* Amazon

o Twitter

Bayou (1995)

Clearinghouse (1987)

BAYO U Terry et al SOSFE

* Replicas keep ordered log
of state updates

+ Gossip entries in their log

* If no more updates, logs
(states) eventually converge

* But Bayou gives you more:

“If the log of R
contains an update w
first performed on R,

then the log of R
also contains all the
updates accepted by

R prior to w.”

If a replica sees an
update w, it has seen all
updates that causally
precede wl

WHY

U5 AL CONSISTENGSE

@ UoAL CONSISTEN G

Updates that are causally related should be seen by all replicas
in the same order. Concurrent updates may be seen by
different replicas in different orders (Hutto & Ahamad, 1990)

Two operations a and b are causally related (a —=b) if

|. The same client executes first a then b

2. b reads the value written by a

3. There exists an operation a' such thata—a’'and a— b

. meditates unspeakable crime
defriends me (update |)

I. Receives selfie (update 2) then |
defriend request (update |) 2

= oo 3. posts selfie (update 2) while

engaging in unspeakable crime

BEOUENTIALLY CONSISTREINEE @ USALLY CONSISTENGE

E ~W(x)a— —~W(x)C— E ~W(x)a— «~w(X)c—

E —r(x)a — - r(x)é — Y~ r(x)b\—> E —r(x)a — «—r(x)c - «r(xX)b—

e

@ UoAL LY CONSISTENEE @ USALLY CONSISTENGE

=] —wia (e

L] we a2 wixb we I (e —w(b

| —r(x)a - —rC— —r()b— | —r(x)a - —rC— —r()b—
CAUSALLY CONSISTENT? CAUSALLY CONSISTENT?

=] —wia (s

- . oo

m w(x)a r(x)a w(x)c r(x)c wx)b rx)b m —r(xX)a —» «~r(X)c - «r(x)b -

@ UoAL LY CONSISTENEE @ USALLY CONSISTENGE

E E «~W(X)a— —W(X)c—
| - r(x)a— | cra— «w(x)b—
m —r(x)a — «—r(x)c - «r(xX)b— m —r(x)a — «—r(x)c - «r(xX)b—
w(Xx)a w(x)b w(X)c
@ USALLY CONSISTENGE @ USALLY CONSISTENGE
E «~Ww(X)a— «~W(X)c— E
m «r(X)a — m «r(X)a —
m —~rxX)a— «w(X)b— «—r(x)c - «r(xX)b— m —r(x)a — «—r(x)c - «r(xX)b—

@ USALLY CONSISTENGE

E «~Ww(X)a— «~Ww(X)c—

= |)2 —w(x)b— r(X)C— «—r(x)b-s

oo UoAL CONSISTEN Ghg
IN BAYOU

* When replica R receives an « Replicas learn which updates
update from a client, it they need to exchange by
assigns to it a timestamp comparing version vectors!

(logical time;, i)

* Each replica Ri maintains a
version vector Ri.V[]

» RiV[j] = highest timestamp
of any write logged by R|
and known to R;

@ USALLY CONSISTENGE

]

:I —r(x)a — Does not meet the
sequential specification!

[wa roa weob wie rGge rixb

EEIRDOES [T SCHiES

* Log-exchange requires each replica to serve
as serialization point

» When replica is a datacenter with
thousands of shards, some node must
serialize across all shards

COPS: CLUSTER OF ORDER COPS: CLUSTER OF ORDER
PRESERVING SERVERS PRESERVING SERVERS

Keyk Next node
clockwise is in

® Many clients, few datacenters ® Many clients, few datacenters e ° &rge

® Consistent hashing to partition -
the keys ’

» in each shard a “primary” node

responsible for key G Hash key and e
.. place on ring .

mPS; CLUSTER OF OREISE mPS; CLUSTER OF OREISE
PRESERVING SERVERS ‘& PRESERVING SERVERS ‘&

® Many clients, few datacenters ® Many clients, few datacenters : “"
L4 -
.] s 5 5 .] i ‘a3 10\a

e Consistent hashing to partition Rid Sl e Consistent hashing to partition 'ﬂ" s

the keys G i the keys i P

» in each shard a “primary” node wi(5) » in each partition a “primary”’ node 7-

responsible for key : : Powa(6) responsible for key
: i 4:—{—’—>

® Fach datacenter is linearizable i : § i ® Fach datacenter is linearizable

» low latency,“no” partitions # i Time i i » low latency,“no’” partitions

® Get/Put operations execute at a
local datacenter; and then
asynchronously replicated

TOWARDS SCALABLE TOWARDS SCALABLE
@5 AL CONSISTENGNE @ USAL CONSISTEN GRS

Distributed verification Distributed verification
SRR Seriahsation
; !\1:;‘\: ; “‘\1";\, Wi
+ Each dlient keeps a context | + Each client keeps a context [)é

» In principle, it includes all values previously read or » In principle, it includes all values previously read or
written in client's session and what they depend on written in client's session and what they depend on

t Ui
4 : Yl Ve
* On get, returned key version and its causal o
dependencies are are added to context 2

* On get, returned key version and its causal
dependencies are are added to context

-

TOWARDS SCALABLE TOWARDS SCALABLE
@5 AL CONSISTENGNE @ USAL CONSISTEN GRS

Distributed verification Distributed verification
m‘ ; : " m‘ ; : "

My Wi My Wi
. N . Story
« Each client keeps a context | « Each client keeps a context |
= X3 it Ui © X3 12 uj
» In principle, it includes all values previously read or » In principle, it includes all values previously read or
written in client's session and what they depend on written in client's session and what they depend on
: . Yl Ve : . Yi Ve
+ On get, returned key version and its causal e * On get, returned key version and its causal ol
dependencies are are added to context 2 dependencies are are added to context 2

+ On a put, client includes (and replicates) its + On a put, client includes (and replicates) its
“nearest dependencies’ from context... “nearest dependencies’ from context...

TOWARDS SCALABLE
@5 AL CONSISTENGNE

Distributed verification
m‘ ; " "

My
\\0\1‘)‘

: i
* Each client keeps a context {8 s

» In principle, it includes all values previously read or
written in client's session and what they depend on
g . Al \Z3
* On get, returned key version and its causal e
dependencies are are added to context 2

+ On a put, client includes (and replicates) its
“nearest dependencies’” from context...
and resets context to the latest put

S DEMIC SYSIRES
EREORING CAUSAL CONSISTRENSSS

- COPS (SOSP 1 1) - Orbe (SOCC '13)

* Bolt-On (SIGMOD ' 3) * GentleRain (SOCEIEE

* Chain Reaction (Eurosys Cure (ICBE SRitey
159
» Tardis (SIGMOEBSEE
BEsEr (INSDI ' 13)
» Saturn (Eurcsys &8

137

TOWARDS SCALABLE
@5 AL CONSISTENGNE

¥)

N

« Remote datacenter, before 4 e &
applying z4, verifies nearest Zi
dependencies have already
been applied

Y1, Ve o 4

Causal Consistency

t

NS TRIAL SYSIFERES NS TRIAL SYSIFERES
EOING CAUSAL CONSISTENGHS BESING CAUSAL CONSISTENGS

No, ser;y now...

[|
SEOVWDOWN CASCARES = | - ‘
a 8 8
o 8 a
=) 1=}

- e e e e e e e e e = e =

-
[
|
@l d 1
|
DatacenterA: \Datacenter B, DatacenterA:
Writes are causally ordered . L
Ve e P Current causal systems enforce causal consistency as an invariant
|

Slowdown Core SEOVYVDOWN CASCAEIESS
IN EIGER vsoi13)

1200

=
(=]
(=]
o

800

(=)
o
o

Buffers for replicated
writes grow out of
control

400

Buffered Replicated Writes
N
(=]
o

o

1
I 1] 500 1000 1500 2000 2500
1 . " .
Replicated writes received
VISl Datacenter B |1 P

N R / —Normal —Slowdown

Alice’s advisor unnecessarily waits for Justin Bieber's
update despite not reading it

OCCUL Mehdi et al, NSDI ‘| 7

Observable Causal Consistency Using Lossy [imestamps

@LESERVABLE CAUSEE
@ONSISTENGHE

» Causal Consistency
each client observes a monotonically non decreasing
set of updates (including its own) in an order that
respects potential causality between operations

Instead of a causally
consistent data store,

implement a data store
that appears to clients
indistinguishable from one

OCCULT

Observable Causal Consistency

! 1
! 1
I @l |
! 1
! 1
! 1
! 1
! 1
! 1
| @l I
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
!]

Datacenter A

N e e e e e e e e e e e e e = =

Datacenter B
\

How can | guarantee clients observe
a causally consistent datastore ?

Shardstamp

1
1
1
1
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
1 1
1 1
! 1
! 1
! 1

Datacenter B

Each shard keeps track of a shardstamp
which counts the writes it has applied

Client |

Client 2

Master

1
1
1
1
1
1
1
1
1
1
1
Master :
1
1
1
1
1
1
1
1
]

Datacenter A

Writes accepted only by master shards and then
replicated asynchronously and in-order to slaves

Shardstamp

1
1
1
1
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
1 1
1 1
! 1
! 1
! 1

Datacenter B

Slave

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
1 1
1 1
! 1
! 1
! 1

Datacenter B

Causal timestamp: vector of shardstamps
identifying the state client knows about

Client 3

Client |

Client 2

Client |

Client 2

Shardstamp

1
1
1
1
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A
S e -

Write protocol: causal timestamps stored with

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Datacenter B

objects to propagate dependencies

Shardstamp

1
1
I
I
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A
S e -

Write protocol: causal timestamps stored with

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Datacenter B

objects to propagate dependencies

Client 3

Client 3

B 2y

Client |

Client 2

Client |

Client 2

g

Shardstamp

—— _— -

1
1
1
1
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A
S e -

Write protocol: causal timestamps stored with

Slave

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Datacenter B

objects to propagate dependencies

Shardstamp

1
1
I
I
1
1
1
1
1
1
1

Master :
1
1
1
1
1
1
1
1
]

Datacenter A

&
\

Slave

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
: NEVE :
1 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Datacenter B

Read protocol: always safe to read from the Master

Client 3

Client 3

Shardstamp

Client |

Read protocol: object’s causal timestamp
merged into client’s causal timestamp

1
1
1
: Master
1
.
6 1
'3
Client 2 :
1
1
1 DatacenterA:
S e -
Shardstamp
Client | Master

1
e 'g
Client 2 1
:
: DatacenterA:
O o 25 -

Later writes reflect causal
timestamp of read object

Shardstamp

1
1
H B '
0 1
Client | 0 Master :
! 1
! 1
! 1
1
(010 0 - : (010 0
Client 3 | Master § Client 3
! 1
! 1
ooE Dl
Client 2 1 1
! 1
! 1
1
1 DatacenterA:
PP o PR o -
Later writes reflect causal
timestamp of read object
Shardstamp
Client |
Client 3 Client 3
Client 2

Later writes reflect causal
timestamp of read object

Client |

Client 2

Client |

Client 2

Shardstamp

Replication: As in eventual consistency, asynchronous,
unordered writes are applied immediately

Shardstamp

B2

¢ ™

17 :

| - 5
1

: Slave : Client |

! 1

! 1

! 1

! 1

- T 0 [0 0|

: Slave : Client 3

! 1

i 1

1

o oo

1 1 Client 2

] 1

] 1

1

| Datacenter B:

(N e e -

I

1

1

| Ba

: Client |

1

1

I ?

1

! 0

: :R(Y) Client 3

! 1

i 1

1

‘Bl ! (85 5

1 1 Client 2

! 1

! 1

1

1

Read protocol: Clients run consistency
checks when reading from slaves

Shardstamp

B2

Replication: Slave increment its shardstamp using

causal timestamp of replicated write

Shardstamp

B2

Read protocol: Clients run consistency
checks when reading from slaves

1R®)

Client 3

Client 3

Shardstamp Shardstamp

1 I’ 7 1 1
1 | 1
! 1
(813 2| | [« EEEA ! . (813 2 : Blss 2
. 1 | . 1
Client | : : Delayed! 7 Slave : Client | : : Delayed!

1 ! 1 1
1 1 1 1) 1
: 1 : 1 8 B : 1
| | |
8.5 8.5 0 3.5

| ESES : : NEVE : " Client 3 H Master : Client 3
: 1 : 1 : 1
1 1 1
BEE B ! ‘Bl ! BEE B !
Client 2 1 1 1 1 Client 2 1 1
! 1 ! 1 ! 1
: 1 : 1 : 1
1 DatacenterA: | Datacenter B: 1 DatacenterA:
_____ - N e e i gt e A

Read protocol: Though x is delayed, Read protocol: Though x is delayed,
we can read y anyway! we can read y anyway!

e FUMESTIA Ml

MY KINGDOM FOR A TIMESTAMP! COMPRESSING TIMESTAMPS

* What happens to causal timestamps at scale? * Conflate shardstamps with the same index mod N

» datacenters have tens of thousands of shards. ..

@ONMPRESSING TIMES TAMESE EENPRESOING TIMES TARMIESS
ERRUC TURAL COMPRESSIE ERRUCTURAL COMPRESSIES

» Conflate shardstamps with the same index mod N * Use loosely synchronized rather than logical clocks

False dependencies

Fewer false dependencies: staleness bound by
clocks’ offset, independent of write rate

EENPRESOING TIMES TARMIESS
IEPFORAL COMPRESSSIE N -

Mahajan et al; Lloyd et al. (201 1)
» False dependencies arise when recent and |—_;| =
old timestamps are conflated

v Use high resolution to track recent updates E w(x)b
v Conflate the rest!

Catchall

S 2989388013873 | 3642 IR Shardat Aot Causal consistency does not guarantee eventual consistency!
ardstamps
16K Shards i k :
« Merging is either blunt (last writer wins) or hard:
Shard Ids 1815]1571 001% Fale
173

. » requires knowledge of application semantics
dependencies 9 8 PP

EANG THE DRESIM

+ Not about preventing anomalies

« About how to provide system support
for efficiently resolving anomalies

MR. PRUNT'S WIKIPEDIA

Image Image

Europe N

MIEE T MR PRGNS

S CE UPDATES CONEERNES

Image

Content

Image

Europe ON)

FOE TOO, CONCURRENFRSS @i RLIE READSZSiGs
W DATES CONTENER SIND UPDATES REFERENGES

Europe N Europe ON)

e E READS @IS
e UPDATES IMAEIS

Europe N Europe ON)

INCONSISTENT FINAL SRS

Content

Content

References

G,
(
References

Europe N

A vWOULD PRUNTSSZSNE
@realdolandprunt Y

» Syntactic conflict resolution is sad

» can't handle semantic conflicts e et

» creates the Potemkin abstraction™ of a
sequential view

* Lack of cross-object semantics is
pathetic

» asingle write-write conflict can affect the
entire system state

References

1S MERGING FARIES

Conter Content

Bob

Im%ge

S i Dave

ey £ B References
Charlie #

» Conflicts hinge on semantics
« Conflicts are indirect

== VY ORED
ﬂ TARcEBOEet aI,SIGMOD‘I6ﬂ ﬂ ECCORDING TOGIHE ﬂ

* Branch-on-conflict .

» conflicts create distinct branches

. . A ' AI
If you can't hide conflicts o =
from applications, make » branches track linear evolution Charlle ?
them truly visible! * Atomically merge branches (not

objects!) when desired

» expose fork/merge points

FlUEASIEVIG | FlUEASIEVIG |
@O | OCAL BRANGES @O | OCAL BRANGES

« TARDIS branches-on-conflict locally for performance « TARDIS branches-on-conflict locally for performance

PP WAS PP WAS

TOTALLY
WICKEDI

TOTALLY
WICKEDI

« No increase in complexity as
» abstraction of sequential store not preserved end-to-end

» applications already built to handle merges

