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Markets come in many forms …

… some of which don’t conform to 
conventional notions of markets …

… and some in which money may play little or no role.
– excerpt from Who Gets What – and Why 
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MATCHING MARKETS
In matching problems, prices do not 
do all – or any – of the work
Agents are paired with other (groups 
of) agents, transactions, or contracts
• Workers to firms
• Children to schools
• Residents to hospitals
• Patients to donors
• Advertisements to viewers
• Riders to rideshare drivers
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UNCERTAINTY

• Does a matched edge truly exist?
• How valuable is a match?
• Will a better match arrive in the 

future?
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COMPETITION
Rival matching markets compete over the same agents
• How does this affect global social welfare?
• How to differentiate?
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MATCH CADENCE
How quickly do new edges form?

How frequently does a market 
clear?

Is clearing centralized or 
decentralized?

Can agents reenter the market?
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INTER-AGENT EFFECTS
Matching market literature focuses on maximizing the sum of 
the utility of individual matches (subject to constraints).
• Not always the right idea!

Say you are a firm hiring workers: 
what is your goal?

Maximize the number of open positions filled …
… with “good” candidates …
… subject to fairness constraint(s) …
… and such that the entire hired cohort works well together!
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Use data & optimization –
alongside human domain expertise 

– to learn matching policies

Strong theoretical underpinnings 
provide design guidance & 

runtime guarantees
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BIPARTITE B-MATCHING



BIPARTITE B-MATCHING
In traditional matching, any vertex can be matched at most
once

b-matching: given G = (V,E), and a length-|V| vector b of 
nonnegative integers …

• Any vertex i can be matched at most b(i) times 
• Generalizes traditional matching: b = 1 

Bipartite b-matching: given bipartite graph G = (U,V,E) ...

• PTIME for maximum cardinality/weight [Kleinschmidt 1995, & earlier]

Further generalization: lower and upper bounds

• Vertex i must be matched at least b-(i), and at most b+(i), times
• NP-hard, even for existence
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DIVERSITY IN 
MATCHING MARKETS
New goal: provide “good” coverage over different classes of 
items or agents
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DIVERSITY IN 
MATCHING MARKETS
Maximum weighted matching will treat individual reviewer 
matchings as independent of the full review set for a paper
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DIVERSITY IN 
MATCHING MARKETS
Maximum diverse weighted matching will balance individual 
quality with the diversity of opinion in the paper review set
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HOW TO DEFINE 
DIVERSITY?
Given K classes on one side of the market …
• {AI, HCI, Systems, Theory} paper classes à K = 4
• … want marginal gain of same-class matches to decrease.
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For each cluster k on 
the opposing side of 
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… the more times node j is matched to 
nodes in cluster k, the lower the gain
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SOLVING THIS 
PROBLEM
Basic maximum weight bipartite matching: PTIME

Maximum weight bipartite b-matching (lower+upper): NP-

hard [Chen et al. ‘16]

• Integer linear program (so, ~solvable)

Our problem: at least as hard L

• Mixed integer quadratic program (so, harder)

• (Also, the program is enormous)

One can show that an obvious PTIME greedy algorithm:

• Guarantees 1 – 1/e of optimality (for many cases)!

• Open question for the general case.
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ENTROPY GAIN & 
THE PRICE OF DIVERSITY
We use entropy to measure the gain in diversity:
• Entropy is zero if all matches come from the same cluster

• Entropy is maximized if matches are “spread evenly” across 
clusters

• (Edge weights, aka individual match quality, affects this.)

Entropy gain: relative gain in entropy compared to max weight

Price of diversity: relative loss in efficiency when compared to a 
maximum weight (aka, efficient) matching
• Want: no price of diversity with high gain in entropy!

• One can show the price of diversity can be very bad in theory L.
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BUT WHAT ABOUT IN 
PRACTICE?
MovieLens 1M dataset [Harper&Konstan ‘16]

• One million ratings of movies (we use a standard collaborative 
recommender system to fill in blanks)

SIGIR and KDD reviewer bidding [Karimzadehgan&Zhai ‘09, Sugiyama&Kan ‘10]
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Dataset PoD EG PoD EG
MovieLens 0.01 1.45 0.01 1.45

SIGIR 0.08 1.63 0.17 1.60
KDD 0.06 4.28 0.07 4.28

Solve to 
optimality

Solve 
approximately



INITIAL TAKEAWAY
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We can greatly increase the diversity of a 
recommended matching at almost no cost to 

overall efficiency.
(Not in theory, but in practice, and in the static case …)

Assumes a well-
defined objective …

No uncertainty!Really, no uncertainty!



THESE THREE TALKS
• Five dimensions of matching market design:

• Managing short-term uncertainty
• Balancing equity & efficiency
• Combining human input and optimization
• Incentives & mechanism design
• Non-linear objectives such as diversity

• (Each is supported by my work with a 
nationwide kidney exchange and in hiring.)

• Also, some open problems!
Covers recent and ongoing work – talk to me for details!

Publications:  jpdickerson.com/pubs.html
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RUNNING EXAMPLE:
ORGAN ALLOCATION
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KIDNEY TRANSPLANTATION
• US waitlist: about 100,000

• 35,587 added in 2017
• 4,044 people died while waiting
• 14,022 people received a kidney

from the deceased donor waitlist
• 5,794 people received a kidney from a living donor

• Some through kidney exchanges!
• This talk: experience with UNOS national kidney exchange 

(and some data from the NHS NLDKSS)

1988 1993 1998 2003 2008 2013

Transplants Waiting List

Demand

Supply
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[Roth et al. 2004]
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TRIED-AND-TRUE: DECEASED-
DONOR ALLOCATION
Online bipartite matching problem:
• Set of patients is known (roughly) in advance

• Organs arrive and must be dispatched quickly

Constraints:
• Locality: organs only stay good for 24 hours

• Blood type, tissue type, etc.

Who gets the organ?  Prioritization based on:
• Age?

• QALY maximization?

• Quality of match?

• Time on the waiting list?
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QUICK ASIDE: MORE INFO
Many people asked: “How did you find out about this type of 
research?”

AAAI/ACM Conference on Artificial Intelligence, Ethics, & 
Society (AIES)
• http://www.aies-conference.com/
ACM Conference on Fairness, Accountability, and 
Transparency (FAT*)
• https://fatconference.org/
ACM Conference on Economics and Computation (EC)
• http://www.sigecom.org/ec18/
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(2- and 3-cycles, all surgeries performed simultaneously)

KIDNEY EXCHANGE
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NON-DIRECTED DONORS & CHAINS

Not executed simultaneously, so no length cap required based on 
logistic concerns …

… but in practice edges fail, so some finite cap is used!

NDD

P1

D1

P2

D2

P3

D3

…
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Pay it 
forward

[Rees et al. 2009]
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REAL-WORLD IMPACT
Kidney exchange is only a decade young, but already 
accounts for >10% of living donations in the United States
• Now a worldwide phenomenon (AU, CA, IL, PT, TR, UK, …)

• (Slowly) moving toward organized international exchange

Worked extensively with the United Network for Organ 
Sharing (UNOS) US nationwide kidney exchange!
• 153+ transplant centers (roughly 66% of the US)

• Completely autonomous biweekly match runs

• Only automated exchange in the US

John P. Dickerson - CMMRS - August 2018 28



THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of 
cycles of length at most L, and chains

• Typically, 2 ≤ L ≤ 5 for kidneys (e.g., L=3 at UNOS)
• NP-hard (for L>2) in theory, really hard in practice

John P. Dickerson - CMMRS - August 2018

[Abraham et al. 07, Biro et al. 09]

[Glorie et al. 2014, 
Anderson et al. 2015, 
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SPECIAL CASE: L = 2
PTIME: translate to maximum matching on undirected graph

30

v1 v3v2 v4

v5v6

(Six pairs, no altruists.)
???????????????

v1 v3v2 v4

v5v6

v1 v3v2 v4

v5v6

v1 v3v2 v4

v5v6
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SPECIAL CASE: L = ∞
PTIME via formulation as maximum weight perfect matching

31

v1 v3v2 v4

v5v6

(Six pairs, no altruists.)
???????????????

v1 v3v2 v4

v5v6

d1 d2 d3 d4 d5 d6Donors:

p1 p2 p3 p4 p5 p6Patients:

Edge weights:

= 0 

= we
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GENERAL CASE: L = ?
NP-hard via reduction from 3D-matching:

• Given disjoint sets X, Y, Z of size q …

• ... and a set of triples T ⊆ X x Y x Z ...

• ... is there a disjoint subset M ⊆ T of size q?

32
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T = {
(1,1,1),
(2,3,2),
(1,2,1),
(3,2,3),

}

??????????????
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GENERAL CASE: L = ?
Construct a gadget for each ti = {xa, yb, zc} in T
• Gadgets intersect only on vertices in X ⋃ Y ⋃ Z 
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GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti in T:

34

xa
i yb

i zc
i

1 2 L-1
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GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti not in T:

35

xa yb zc

xa
i

1 2 L-1

yb
i

1 2 L-1
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i

1 2 L-1
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GENERAL CASE: L = ?
We have a perfect cycle cover à M is a perfect 3D matching
• Construction only has 3-cycles and L-cycles
• Short cycles (i.e., 3-cycles) are disjoint from the rest of the 

graph by construction
Thus, given a perfect cover (by assumption):
• Widgets either contribute according to ti in M …
• … or ti not in M.
Thus there is a perfect matching in the original 3D matching 
instance.
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HOPELESS …?
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Binary variable xc for each feasible cycle or chain c
Maximize

u(M) = Σ wc xc
Subject to

Σc : i in c xc ≤ 1 for each vertex i

A SIMPLE INTEGER PROGRAM
(“Best” = max weight, myopic matching)

“SIMPLE” …?
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[Roth et al. 04, 05, 
Abraham et al. 07]
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BASIC APPROACH #1:
THE EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i

Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

[Abraham et al. 2007]

Flow constraint
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STATE OF THE ART FOR 
EDGE FORMULATION
Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

• PC-TSP: visit each city (patient-donor pair) exactly once, but with 
the additional option to pay some penalty to skip a city (penalized 
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L, 
but build chains in the final solution from decision variables 
associated with individual edges
Then, an exponential number of constraints could be required to 
prevent the solver from including chains of length greater than K; 
these are generated incrementally until optimality is proved.

• Leverage cut generation from PC-TSP literature to provide stronger 
(i.e. tighter) IP formulation

[Anderson et al. PNAS-2015]
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BEST EDGE FORMULATION
[Anderson et al. 2015]

A

A

A

V

If: flow into v from a chain
Then: at least as much flow
across cuts from {A}

C1

C2

C3

…

Ck
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Binary variable xc for each feasible cycle or chain c

Maximize
u(M) = Σ wc xc

Subject to
Σc : i in c xc ≤ 1 for each vertex i

[Roth et al. 2004, 2005,
Abraham et al. 2007]

BASIC APPROACH #2:
THE CYCLE FORMULATION
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SOLVING THE CYCLE 
FORMULATION IP
Too large to write down
• O(max{ |P|L, |A||P|K-1 }) variables

• |A| = 5, |V|=300, L=3, K=20 … |A||P|K-1 ≈ 5 x 1047

Approach: branch-and-price [Barnhart et al. 1998]:

• Branch: select fractional column and fix its value to 1 and 0 
respectively

• Fathom the search node if no better than incumbent

• Solve LP relaxation using column generation

x7

x4

1 0

1 0

… …

…
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COLUMN GENERATION
Master LP P has too many variables
• Won’t fit in memory, and/or would take too long to solve

Begin with restricted LP P’, which contains only a small 
subset of the variables (i.e., cycles)
• OPT(P’) ≤ OPT(P)

Solve P’ and, if necessary, add more variables to it
• We do this intelligently by solving the pricing problem

Repeat until OPT(P’) = OPT(P)
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DFS TO SOLVE 
PRICING PROBLEM
Pricing problem:

• Optimal dual solution π* to reduced model
• Find non-basic variables with positive price (for a 

maximization problem)
• 0 < weight of cycle – sum of duals in π* of constituent vertices
• Positive price for cycle à dual constraint is violated
• No positive price cycles à no dual constraints violated

First approach [Abraham et al. EC-2007] explicitly prices all 
feasible cycles and chains through a DFS

• Can speed this up in various ways, but proving no positive 
price cycles exist still takes a long time

[Abraham et al. EC-07]
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GENERAL PRICING OF CYCLES & 
CHAINS IS NP-HARD
Reduce from Hamiltonian path

46

[Plaut et al. arXiv:1606.00117]
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Arbitrary 
graph G
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COMPARISON
Tradeoffs in number of variables, constraints

• IP #1: O(|E|L) constraints vs. O(|V|) for IP #2
• IP #1: O(|V|2) variables vs. O(|V|L) for IP #2

IP #2’s relaxation is weakly tighter than #1’s.  Quick intuition 
in one direction: 

• Take a length L+1 cycle.  #2’s LP relaxation is 0.
• #1’s LP relaxation is (L+1)/2     – with ½ on each edge

Recent work focuses on balancing tight LP relaxations and 
model size [Constantino et al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et 
al. 2015, Anderson et al. 2015, Mak-Hau 2015, Manlove&O’Malley 2015, Plaut et al. 2016, …]:

• Newest work: compact formulations, some with tightest 
relaxations known, all amenable to failure-aware matching
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COMPACT 
FORMULATIONS
Previous models: exponential #constraints (CG methods) 

or #variables (B&P methods)
Let F be upper bound on #cycles in a final matching
Create F copies of compatibility graph
Search for a single cycle or chain in each copy

• (Keep cycles/chains disjoint across graphs)

[Constantino et al. EJOR-14]
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1A: max edge weights over all graph copies
1B: give a kidney <-> get a kidney within that copy
1C: only use a vertex once
1D: cycle cap

maximize
X

f

X

(i,j)2A

wijx
f
ij

subject to
X

j:(j,i)2A

xf
ij =

X

j:(i,j)2A

xf
ij 8i 2 V, 8f 2 {1, . . . , F}

X

f

X

j:(i,j)2A

xf
ij  1 8i 2 V

X

(i,j)2A

xf
ij  k 8f 2 {1, . . . , F}

xf
ij 2 {0, 1} 8(i, j) 2 A, 8f 2 {1, . . . , F}

1A

1B

1C

1D

1E

xf
ij =

⇢
1 if arc (i, j) is selected to be in copy f of the graph,
0 otherwise

COMPACT FORMULATIONS
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Polynomial #constraints and 
#variables!
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PIEF: A COMPACT MODEL 
FOR CYCLES ONLY
Builds on Extended Edge Formulation of Constantino et al.

• O(|V|) copies of graph, 1 binary variable per edge per copy

• Enforce at most one cycle per graph copy used

• Track positions of edges in cycles for LP tightness

The tightest known non-compact LP relaxation
ZCF = ZPIEF

(disallowing chains)

T
H
E
O
R
E
M

(EC-16 paper also presents HPIEF, which is a compact 
formulation for cycles and chains, but with weaker ZHPIEF)

50

[Dickerson Manlove Plaut Sandholm Trimble EC-16]
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PICEF: POSITION-INDEXED 
CHAIN-EDGE FORMULATION
In practice, cycle cap L is small and chain cap K is large
Idea: enumerate all cycles but not all chains [Anderson et al. 2015]

• That work required O(|V|K) constraints in the worst case
• This work requires O(K|V|) = O(|V|2) constraints 

Track not just if an edge is used in a chain, but 
where in a chain an edge is used.

M
A
I
N

I
D
E
A

For edge (i,j) in graph: K’(i,j) = {1} if i is an altruist
K’(i,j) = {2, …, K} if i is a pair
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PICEF: POSITION-INDEXED 
CHAIN-EDGE FORMULATION
Maximize

u(M) = Σij in E Σk in K’(i,j) wij yijk + Σc in C wc zc

Subject to
Σij in E Σk in K’(i,j) yijk + Σc : i in c zc ≤ 1 for every i in Pairs

Each pair can be in at most one chain or cycle

Σij in E yij1 ≤ 1 for every i in Altruists

Each altruist can trigger at most one chain via outgoing edge at position 1

Σj:ij in E yijk+1 - Σj:ji in E ⌃ k in K’(j,i) yjik ≤ 0 for every i in Pairs
and k in {1, …, K-1}

Each pair can be have an outgoing edge at position k+1 in a chain iff it 
has an incoming edge at position k in a chain 52John P. Dickerson - CMMRS - August 2018



WHAT IF THERE ARE STILL 
TOO MANY VARIABLES?
In particularly dense graphs or if, in the future, longer cycle 
caps are allowed, PICEF may need too many cycle variables
Solve via branch and price by storing only a subset of 
columns in memory, then solving pricing problem
• Search for variables with positive price, bring into model

• Previously: that search is exponential in chain cap [Abraham et al. 
2007, Glorie et al. 2014, Plaut et al. 2016]

• General: pricing chains & cycle is NP-hard [arXiv:1606.00117]

But we only need to price cycles, not chains!

PICEF is the first branch-and-price-based model with 
provably correct polynomial-time pricing

P
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POLYNOMIAL-TIME 
CYCLE PRICING
Solve a structured problem that implicitly prices variables
• Variable = xc for cycle (not chain) c
• Price of xc =  wc – Σv in c δv

Example
• Price: (2+3+2) – (δP1+δP2+δP3)

=    Σe in c we – Σv in c δv
= Σ(u,v) in c [w(u,v) – δv]

Idea: Take G, create G’ s.t. all edges e = (u,v) are reweighted 
r(u,v) = δv – w(u,v)
• Positive price cycles in G = negative weight cycles in G’

P1

P2 P3

2 2

3wc

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]
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ADAPTED BELLMAN-FORD 
PRICING FOR CYCLES ONLY
Bellman-Ford finds shortest paths
• Undefined in graphs with negative weight
• Adapt B-F to prevent internal looping during the traversal

• Shortest path is NP-hard (reduce from Hamiltonian path):
• Set edge weights to -1, given edge (u,v) in E, ask if shortest 

path from u to v is weight 1-|V| à visits each vertex exactly 
once

• We only need some short path (or proof that no negative 
cycle exists)

• Now pricing runs in time O(|V||E|L2)

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]
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HOW DO ALL THESE MODELS 
PERFORM IN PRACTICE?

Test on real and simulated match runs from:
• US UNOS exchange: 143+ transplant centers

• UK NLDKSS: 20 transplant centers

Following are tests against actual code for:
• BnP-DFS [Abraham et al. EC-07]

• BnP-Poly [Glorie et al. MSOM-14, Plaut et al. AAAI-16]

• CG-TSP [Anderson et al. PNAS-15]
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REAL MATCH RUNS
UNOS & NLDKSS
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UNOS: 286 match runs NLDKSS: 17 match runs
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GENERATED DATA
|P|=700, INCREASING %ALTRUISTS
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2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 7
HPIEF
PICEF
BNP-PICEF
BNP-POLY
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Chain length cap

|P | = 700, |N | = 14

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 35

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 175

Solvers that are not shown timed out (within one-hour period).
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THE BIG PROBLEM
What is “best”?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?

• Modeling choices?

• Incentives? Ethics? Legality?

Optimization can handle this, but may be inflexible in 
hard-to-understand ways (for humans)

John P. Dickerson - CMMRS - August 2018

Want humans in the loop at a high level
(and then CS/Opt handles the implementation)
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THE BIG PROBLEM
What is “best”?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?

• Modeling choices?

• Incentives? Ethics? Legality?

Optimization can handle this, but may be inflexible in 
hard-to-understand ways (for humans)

John P. Dickerson - CMMRS - August 2018

Want humans in the loop at a high level
(and then CS/Opt handles the implementation)
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MANAGING SHORT-TERM 
UNCERTAINTY

John P. Dickerson - CMMRS - August 2018

[EC-13, EC-15, EC-16, Management Science 2018]
With A. Blum, N. Haghtalab, D. Manlove, B. Plaut, A. Procaccia, T. Sandholm, A. Sharma, J. Trimble
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MATCHED ≠ TRANSPLANTED

Only around 10-15% of UNOS matched structures 
result in an actual transplant
• Similarly low % in other exchanges [ATC 2013]

Many reasons for this.  How to handle?

One way: encode probability of transplantation
rather than just feasibility
• for individuals, cycles, chains, and full matchings

John P. Dickerson - CMMRS - August 2018 65



FAILURE-AWARE MODEL
Compatibility graph G

• Edge (vi, vj) if vi’s donor can donate to vj’s patient 
• Weight we on each edge e

Success probability qe for each edge e

Discounted utility of cycle c
u(c) = ∑we � ∏qe

Value of successful cycle Probability of success

66John P. Dickerson - CMMRS - August 2018



FAILURE-AWARE MODEL
Discounted utility of a k-chain c

Cannot simply “reweight by failure probability”

Exactly first i transplants Chain executes in entirety

67

A 1 2 3 4
q1 q2 q3 q4

1q1(1-q2)… + 2q1q2(1-q3)… + 3q1q2q3(1-q4)… + 4q1q2q3q4
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DISCOUNTED CLEARING 
PROBLEM

Find matching M* with highest discounted utility

1 2

3
Maximum cardinality Maximum expected transplants

(“Best” = max expected cardinality  |  limited recourse)

0.1 0.1

0.9

0.9
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Practice:  Solved via branch-and-price 
• One binary decision variable per cycle/chain
• Upper-bounding is now NP-hard
• Pricing problem is (empirically) much easier

Maybe this is 
a good idea …

SOLVING THIS NEW PROBLEM

John P. Dickerson - CMMRS - August 2018

Theorem:
In a sparse random graph model, for any failure probability p, w.h.p. 
there exists a matching that is “linearly better” than any max-
cardinality matching
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G(n, t(n), p): random graph with
• n patient-donor pairs

• t(n) altruistic donors

• Probability Θ(1/n) of incoming edges

Constant transplant success probability q

Theorem from last slide, but a little bit more formal:

For all q∈ (0,1) and α, β > 0, given a large G(n, αn, β/n), w.h.p. there 
exists some matching M’ s.t. for every maximum cardinality matching 
M,

uq(M’) ≥ uq(M) + Ω(n)

John P. Dickerson - CMMRS - August 2018 70
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BRIEF INTUITION: 
COUNTING Y-GADGETS

For every structure X of constant size, w.h.p. can find Ω(n) structures 
isomorphic to X and isolated from the rest of the graph
Label them (alt vs. pair): flip weighted coins, constant fraction are 
labeled correctly à constant × Ω(n) = Ω(n)
Direct the edges: flip 50/50 coins, constant fraction are entirely 
directed correctly à constant × Ω(n) = Ω(n)

John P. Dickerson - CMMRS - August 2018 71



UNOS
2010-2014
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Under discussion for implementation at UNOS
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PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match 
run to test for (non)existence of edges
• E.g., more extensive medical testing, donor interviews, 

surgeon interviews, …

Cast as a stochastic matching problem:

Given a graph G(V,E), choose subset of edges S such that:

|M(S)| ≥ (1-ε) |M(E)| 

Need: “sparse” S, where every vertex has O(1) incident tested edges

John P. Dickerson - CMMRS - August 2018 74



GENERAL THEORETICAL 
RESULTS

Stochastic matching: 
(1-ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Stochastic k-set packing: 
(2/k – ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Adaptive: select one edge per vertex per round, test, repeat

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching: 
(0.5-ε) approximation with Oε(1) queries per vertex, in 1 round

Stochastic k-set packing: 
(2/k – ε)2 approximation with Oε(1) queries per vertex, in 1 round
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ADAPTIVE ALGORITHM

r Base graph Matching picked Result of queries

1:

2:

Input Graph

76

For R rounds, do:
1. Pick a max-cardinality matching M in graph G, 

minus already-queried edges that do not exist
2. Query all edges in M

John P. Dickerson - CMMRS - August 2018



INTUITION FOR 
ADAPTIVE ALGORITHM
If at any round r, the best solution on edges queried so far is 
small relative to omniscient …

• ... then current structrure admits large number of unqueried, 
disjoint augmenting structures

• For k=2, aka normal matching, simply augmenting paths
Augmenting structures might not exist, but can query in 
parallel in a single round

• Structures are constant size à exist with constant probability
• Structures are disjoint à queries are independent
• à Close a constant gap per round

77John P. Dickerson - CMMRS - August 2018



UNOS DATA
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Even 1 or 2 extra tests would result in a huge lift

At p=0.5, one edge test 
per vertex à +21% OPT
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In theory and practice, we’re helping the 
global bottom line by considering post-
match failure …

… But can this hurt some individuals?

John P. Dickerson - CMMRS - August 2018 79



BALANCING EQUITY 
AND EFFICIENCY

John P. Dickerson - CMMRS - August 2018

[AAMAS-14, AAAI-15, AAAI-18, Invited to AIJ, u.r. 2018]
With D. McElfresh, A. Procaccia and T. Sandholm
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SENSITIZATION AT UNOS

Highly-sensitized patients: unlikely to be compatible 
with a random donor

• Deceased donor 
waitlist: 17%

• Kidney exchanges: 
much higher (60%+)

“Hard to match” patients

“Easy to match” patients
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PRICE OF FAIRNESS
Efficiency vs. fairness:
• Utilitarian objectives may favor certain classes at 

the expense of marginalizing others

• Fair objectives may sacrifice efficiency in the name 

of egalitarianism

Price of fairness: relative system efficiency loss 
under a fair allocation [Bertismas, Farias, Trichakis 2011]

[Caragiannis et al. 2009]

John P. Dickerson - CMMRS - August 2018 82



PRICE OF FAIRNESS 
IN KIDNEY EXCHANGE

Want a matching  that maximizes
utility function 

Price of fairness: relative loss of match
efficiency due to fair utility function : 

John P. Dickerson - CMMRS - August 2018

!:ℳ → ℝ
&∗ = argmax

.∈ℳ
!(&)

234 ℳ,!6 = ! &∗ − !(&6∗)
!(&∗)

&∗

!6
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FROM THEORY TO 
PRACTICE
We show that the price of fairness is low in theory

Fairness criterion: extremely strict.
Theoretical assumptions (standard):
• Big, dense graphs (“nà ∞”)

• Cycles (no chains)

• No post-match failures

• Simplified patient-donor features

What about the price of fairness in practice?
John P. Dickerson - CMMRS - August 2018

!"# ℳ,&'≻) ≤ +2 33
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TOWARD USABLE 
FAIRNESS RULES
In healthcare, important to work within (or near to) 
the constraints of the fielded system
• [Bertsimas, Farias, Trichakis 2013]
• Our experience with UNOS

We now present two (simple, intuitive) rules:
• Lexicographic: strict ordering over vertex types
• Weighted: implementation of “priority points”

John P. Dickerson - CMMRS - August 2018 85



LEXICOGRAPHIC FAIRNESS

Matching-wide constraint:
• Present-day branch-and-price IP solvers rely on an 
“easy” way to solve the pricing problem

• Lexicographic constraints à
pricing problem requires an IP solve, too!

Strong guarantee on match composition …
• … but harder to predict effect on economic efficiency

Find the best match that includes at least α
fraction of highly-sensitized patients

John P. Dickerson - CMMRS - August 2018 86



WEIGHTED FAIRNESS

Re-weighting is a preprocess à
works with all present-day exchange solvers

Difficult to find a “good” β?
• Empirical exploration helps strike a balance

Value matching a highly-sensitized patient at 
(1+β) that of a lowly-sensitized patient, β>0

John P. Dickerson - CMMRS - August 2018 87



UNOS MATCH RUNS
WEIGHTED FAIRNESS, VARYING FAILURE RATES

John P. Dickerson - CMMRS - August 2018 88



2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Num. Matched (Sensitized)

9.3

9.4

9.5

9.6

9.7

9.8

9.9
N

um
.M

at
ch

ed
(T

ot
al

)

+0.0 +0.05

+0.7

+2.05

+3.0

Pareto Frontier (No Failure Prob)

0.20 0.22 0.24 0.26 0.28 0.30 0.32

Exp. Transplants (Sensitized)

0.80

0.82

0.84

0.86

0.88
E

xp
.T

ra
ns

pl
an

ts
(T

ot
al

) +0.0 +0.05
+0.3

+0.85

+3.7
+9.7

Pareto Frontier (Constant Failure Prob.)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

Exp. Transplants (Sensitized)
2.20

2.25

2.30

2.35

2.40

2.45

E
xp

.T
ra

ns
pl

an
ts

(T
ot

al
)

+0.0
+0.25

+1.0

+2.5

+5.0

+9.0

Pareto Frontier (Bimodal Failure Prob.)

John P. Dickerson - CMMRS - August 2018 89



CONTRADICTORY GOALS
Earlier, we saw failure-aware matching results in tremendous 
gains in #expected transplants 
Gain comes at a price – may further marginalize hard-to-
match patients because:

• Highly-sensitized patients tend to be matched in chains
• Highly-sensitized patients may have higher failure rates (in 

APD data, not in UNOS data)

90John P. Dickerson - CMMRS - August 2018



UNOS runs, weighted fairness, constant probability of failure (x-axis), 
increase in expected transplants over deterministic matching (y-axis)
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Fairness vs. efficiency can be balanced in 
theory and in practice in a static model …

… But how should we match over time?

John P. Dickerson - CMMRS - August 2018 92



LEARNING TO MATCH IN A 
DYNAMIC ENVIRONMENT

John P. Dickerson - CMMRS - August 2018

[AAAI-12, AAAI-15, NIPS-15 MLHC, w.p. 2018]
With A. Procaccia and T. Sandholm

93



DYNAMIC KIDNEY EXCHANGE
Kidney exchange is a naturally dynamic event
Can be described by the evolution of its graph
• Additions, removals of edges and vertices

Vertex Removal Edge Removal Vertex/Edge Add
Transplant, this exchange               Matched, positive crossmatch Normal entrance

Transplant, deceased donor 
waitlist     Matched, candidate refuses donor  
Transplant, other exchange 
("sniped") Matched, donor refuses candidate

Death or illness                        
Pregnancy, sickness changes 
HLA 

Altruist runs out of patience           
Bridge donor reneges

John P. Dickerson - CMMRS - August 2018

How should we balance matching now versus waiting to match? 94



FUTUREMATCH: LEARNING TO MATCH IN 
DYNAMIC ENVIRONMENTS

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

1. Domain expert describes overall goal 
2. Take historical data and policy input to learn a weight function w for match 

quality
3. Take historical data and create a graph generator with edge weights set by w
4. Using this generator and a realistic exchange simulator, learn potentials for 

graph elements as a function of the exchange dynamics

Offline (run once or periodically)

1. Combine w and potentials to form new edge weights on real input graphs
2. Solve maximum weighted matching and return match

Online (run every match)
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Example objective (MaxLife)
• Maximize aggregate length of time donor organs last in patients …

– … possibly subject to prioritization
schemes, fairness, etc …

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Graft survival (days)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.g
ra

ft
su

cc
es

s
af

te
rn

da
ys

Perfect HLA Match vs. Mismatch
Perfect HLA Match
HLA Mismatch

• Learn survival rates from all living 
donations since 1987

• ~75,000 transplants
• Translate to edge weight

Imperfect HLA match 
has worse survival rate than 

perfect HLA match
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300+ match runs with real UNOS data
Important to use realistic distribution
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Full optimization problem is very difficult
• Realistic theory is too complex

• Trajectory-based methods do not scale

Approximation idea: 
• Associate with each “element type” its potential to help objective in 

the future

• (Must learn these potentials)

• Combine potentials with edge weights, perform myopic maximum 
utility matching
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John P. Dickerson - CMMRS - August 2018 99



What is a potential?

Given a set of features Θ representing structural elements (e.g., vertex, edge, 
subgraph type) of a problem:

• The potential Pθ for a type θ quantifies the future usefulness of that element

E.g., let Θ = {O-O, O-A, …, AB-AB, �-O, …, �-AB}

• 16 patient-donor types, 4 altruist types

• O-donors better than A-donors, so: P�-O > P�-A

Heavy one-time computation to learn potential of each type θ – we use SMAC 
[Hutter Hoos Leyton-Brown 2011]
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Edge weight preprocess à
no or low runtime hit!

Adjust solver to take potentials into account at runtime
• E.g., P�-O = 2.1 and PO-AB = 0.1

• Edges between O-altruist and O-AB pair has weight:
1 – 0.5(2.1+0.1) = -0.1

• Chain must be long enough to offset negative weight

Also take into account learned weight function w
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We show it is possible to:
• Increase overall #transplants a lot at a (much) smaller 

decrease in #marginalized transplants

• Increase #marginalized transplants a lot at no or very low 
decrease in overall #transplants

• Increase both #transplants and #marginalized

Sweet spot depends on distribution:
• Luckily, we can generate – and learn from – realistic families of 

graphs!

EXPERIMENTAL 
RESULTS & IMPACT

Presented at 
Supercomputing

Tied with IBM Watson

John P. Dickerson - CMMRS - August 2018

FutureMatch now used for policy 
recommendations at UNOS 10
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THE GENERAL APPROACH …
John P. Dickerson - CMMRS - August 2018 10
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REINFORCEMENT LEARNING

John P. Dickerson - CMMRS - August 2018 10
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LEARNING TO MATCH IN
DYNAMIC ENVIRONMENTS: OUR SYSTEM

1. Embed current compatibility graph into fixed-dimensional space
2. Neural network uses those vectors to learn appropriate policy
3. Flip a biased coin
4. If heads: find and match maximum cardinality matching
5. Simulate kidney exchange environment and grow the graph 

John P. Dickerson - CMMRS - August 2018 10
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1. EMBEDDING

Neural networks take a fixed-sized vector as input
• Our state space: graphs of any size
• Need: embed the graph as a vector and still maintain certain 

properties, such as node neighborhood structure. We use random 
walks to do so [Li, Campbell, Caceres 2017]

Use random walk on a carefully selected initial distribution to 
capture temporal changes in probability distribution
• Encode distance between pairs of probability distributions
• Empirically, this approach can distinguish between Erdős–Rényi

and Stochastic Block Model graphs

John P. Dickerson - CMMRS - August 2018 10
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SANITY CHECK FOR EMBEDDINGS: 
DISTANCE FUNCTIONS
Distance function to evaluate the degree of similarity/difference 

of two graphs.
• Goal: when two graphs are similar (largely different), their embedding 

vectors are close (far away) in terms of Euclidean distance; 

• Optimal Distance Metric [Xu. et al. 2013]

• Recognizes isomorphic graphs

• NP-hard

• Symmetric Kullback-Leibler Divergence

• Measures divergence rate between two probability distributions

• Uses in-degree of vertices

John P. Dickerson - CMMRS - August 2018 10
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2. EMBEDDING TO NEURAL NET

Feed an embedded graph into, e.g., a neural network to output a 
learned probability for our biased coin flip

John P. Dickerson - CMMRS - August 2018 10
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2. LEARNING ALGORITHM 

Using an adaptation of Asynchronous Advantage Actor-Critic (A3C) 

method [Mnih 2016]

John P. Dickerson - CMMRS - August 2018 10
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4. MAX MATCHING (THE CLEARING 
PROBLEM)—OR NOT

3. BIASED COIN FLIP W/LEARNED 
PROBABILITY 

John P. Dickerson - CMMRS - August 2018 11
0



5. KIDNEY EXCHANGE SIMULATION 
– CHANGING THE INPUT GRAPH
To train the neural network, we must be able to simulate kidney 
exchange (graphs). We use several evolution models.
• Homogeneous Erdős–Rényi graphs [Akbarpour et al. 2017]

• Heterogeneous Erdős–Rényi graphs [Ashlagi et al. 2013]

• Real data from the UNOS exchange

• (Real data from other exchanges?)

John P. Dickerson - CMMRS - August 2018 11
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EARLY RESULTS
We replicate results from prior theory papers:
• In some models, dynamic matching helps
• In some models, dynamic matching does not help
Still iterating on:
• Neural net structure
• Action space (binary coin flip vs. multiple match types)
• Learning method (A3C vs. DQN vs. more standard methods)
But …
• Seems promising. Can learn matching policies beyond simply 

batching for T time periods; can realize gains over greedy.
• Policies depend on graph structure.

John P. Dickerson - CMMRS - August 2018 11
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THE CUTTING EDGE

John P. Dickerson - CMMRS - August 2018 11
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MOVING BEYOND KIDNEYS: 
LIVERS
Similar matching problem (mathematically)

Right lobe is biggest but riskiest; exchange may reduce right 
lobe usage and increase transplants

[Sönmez 2014]

[Ergin, Sönmez, Ünver w.p. 2015]
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MOVING BEYOND KIDNEYS: 
MULTI-ORGAN EXCHANGE
Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

Kidney transplants are “easy” and popular:
• Many altruistic donors

Liver transplants: higher mortality, morbidity:
• (Essentially) no altruistic donors
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[Dickerson Sandholm AAAI-14, JAIR-17]
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Fundamentally different matching problem
• Two donors needed

MOVING BEYOND KIDNEYS: 
LUNGS

[Date et al. 2005; 
Sönmez 2014]

(Compare to the single 
configuration for a “3-cycle” in 
kidney exchange.)

[Ergin, Sönmez, Ünver w.p. 2014]

John P. Dickerson - CMMRS - August 2018 11
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KIDNEY CLUBS
A GENERAL MODEL OF ORGAN EXCHANGE
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KIDNEY CLUBS (I)
A club: set of healthy donors equally willing to donate one of 
their kidneys in exchange for an equal (or greater) number of 
kidneys received by a target set of patients

A club is made of:
• set of donors

• set of patients

• matching multiplier

• matching debt

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Donors

Patients

A B C D

Clubs
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KIDNEY CLUBS (II)
Idea: donors in club c are willing to donate outside of the 
club only if doing so results in a tangible benefit (i.e. kidneys 
donated) to patients in club c
Mechanism enforces:

Debt accumulates with time. It is guaranteed that a club first 
receives kidneys and then might donate some in the future, 
always respecting the inequality above
“Chicken and egg” problem avoided, because some 
operations might happen simultaneously

John P. Dickerson - CMMRS - August 2018 11
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EXPRESSIVITY (I) 
The (uncapped) standard model is a special case:

Forms a club on its own

The multiplier is 1, i.e. donors will donate only if Bill 
receives a kidney from elsewhere

The debt is initially 0

Forms a club on its own. There are no patients

The multiplier is irrelevant, the initial debt is 1

Bill

(Generalized)
Donor-Patient

Pair

⊥Non-directed
donor

John P. Dickerson - CMMRS - August 2018 12
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EXPRESSIVITY (II)
The kidney clubs model allows new possibilities

Bill

1.

What if both donors are willing to donate?

They would agree to trade two (rather than 
one) of their own kidneys in exchange for the 
one Bill needs

John P. Dickerson - CMMRS - August 2018 12
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EXPRESSIVITY (III)
The kidney clubs model allows new possibilities

“Organ alliances” allow donations 
to the system in exchange for future 
donations from the system to the 
club

Ad-hoc forms of this have existed 
or do exist (e.g., LifeSharers, US 
military, Israeli military) 

2.
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INCENTIVE ISSUES
All the standard incentive issues from the standard model, 
along with …
(1)  Intra-club donations cannot be discouraged:
• The debt towards the system cannot increase when donations 

happen intra-club; otherwise, clubs might be incentivized to 
hide information

(2)  Kidneys donated to a club via an inter-club donation have 
to be competitive with intra-club donations:
• Kidneys received via inter-club donations have to be at least 

as good as kidneys that can be received via intra-club 
donations
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THE CLEARING PROBLEM: 
UNCAPPED FORMULATION
Assuming all operations happen simultaneously and there is 
no limit on the length of cycles and chains …
• The standard model’s clearing problem is in PTIME

• The kidney clubs model’s clearing problem is NP-hard

Easy MILP formulation:
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FROM UNCAPPED TO 
CAPPED
The previous assumption is not realistic
• Too many operations might need to be carried out at the same 

time (typically, want limits of 3 or 4 simultaneous operations):

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Donors

Patients

A B C DD E F

Clubs

Patients: {1, 2, 3, 6, 7} 
Donors:   {1, 2, 3, 5, 6}

Need to be operated on at 
the same time (5 pairs!) 
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OPERATION FRAMES
Idea: introduce a temporal 
partial order among the edges

The partial order defines a 
DAG; operation frames are 
the vertices of this DAG

Lets us add constraints of the 
form “no more than K people 
get operated on at the same 
time in this frame”

John P. Dickerson - CMMRS - August 2018 12
6



John P. Dickerson - CMMRS - August 2018

DOES IT HELP?

12
7



EXPERIMENT
Compare the status quo of one donor matched per patient to 
matching (up to, if available) two donors per patient

Randomly sample any patient-donor pair / altruist who has 
ever participated in the UNOS exchange

• Some have more than one donor

• Multi-donor patients trigger (up to) one cycle and one chain

Match twice per week, 3-cycles, 4-chains

Use the same priority-points-based system as UNOS
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OPEN QUESTIONS
Is this ethical?
• Many patients do arrive already with more than one donor …

• Can we use two donors per patient?

• Three donors per patient …?

• N donors per patient …?

Dynamics:
• Operation frames encode some notion of dynamic planning

• Can we take a prior over who will arrive/depart into account?

Incentive issues …
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MANAGING INCENTIVES
Clearinghouse cares about global welfare:

• How many patients received kidneys (over time)?

Transplant centers care about their individual welfare:
• How many of my own patients received kidneys?

Patient-donor pairs care about their individual welfare:
• Did I receive a kidney?
• (Most work considers just clearinghouse and centers)
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INDIVIDUAL 
RATIONALITY (IR)

Long-term IR: 
• In the long run, a center will receive at least the same number 

of matches by participating
Short-term IR:

• At each time period, a center receives at least the same 
number of matches by participating

Will I be better off participating in the 
mechanism than I would be otherwise?

13
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STRATEGY 
PROOFNESS

In any state of the world …
• { time period, past performance, competitors’ strategies, 

current private type, etc }
… a center is not worse off reporting its full private set of 
pairs and altruists than reporting any other subset

Do I have any reason to lie to the 
mechanism?

à No reason to strategize

13
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EFFICIENCY

Efficiency:
• Produces a maximum (i.e., max global social welfare) 

matching given all pairs, regardless of revelation
IR-Efficiency:

• Produces a maximum matching constrained by short-term 
individual rationality

Does the mechanism result in the absolute 
best possible solution?

13
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PRIVATE VS GLOBAL 
MATCHING
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FIRST: ONLY CYCLES (NO CHAINS)

13
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THE BASIC KIDNEY 
EXCHANGE GAME
Set of n transplant centers Tn = {t1 ... tn}, each with a set of 

incompatible pairs Vh

Union of these individual sets is V, which induces the 
underlying compatibility graph

Want: all centers to participate, submit full set of pairs

An allocation M is k-maximal if there is no allocation M' that 
matches all the vertices in M and also more
• Note: k-efficient à k-maximal, but not vice versa

[Ashlagi & Roth 2014, and earlier] 

13
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INDIVIDUALLY RATIONAL?
• Vertices a1, a2 belong to center a, 

b1, b2 belong to center b
• Center a could match 2 internally
• By participating, matches only 1 of its own
• Entire exchange matches 3 (otherwise only 2)

[Ashlagi & Roth 2014, and earlier] 

b1 b2

a2a1

Center b

Center a

14
0

????????????????
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IT CAN GET MUCH WORSE

• Bound is tight

• All but one of a's vertices is part 
of another length k exchange 
(from different agents)

• k-maximal and IR if a matches his 
k vertices (but then nobody else 
matches, so k total)

• k-efficient to match (k-1)*k

[Ashlagi & Roth 2014, and earlier] 

Theorem: For k>2, there exists G s.t. no IR k-
maximal mechanism matches more than 1/(k-1)-
fraction of those matched by k-efficient allocation

Example: k=3 14
1
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RESTRICTION #1

Proof sketch: construct k-efficient allocation for each 
specific hospital's pool Vh
Repeatedly search for larger cardinality matching in an entire 
pool that keeps all already-matched vertices matched (using 
augmenting matching algorithm from Edmonds)
Once exhausted, done

14
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Theorem: For all k and all compatibility graphs, 
there exists an IR k-maximal allocation

[Ashlagi & Roth 2014, and earlier] 
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RESTRICTION #2

Idea: Every 2-maximal allocation is also 2-efficient
• This is a PTIME problem with, e.g., a standard O(|V|3) bipartite 

augmenting paths matching algorithm

By Restriction #1, 2-maximal IR always exists à this 2-
efficient IR always exists

14
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[Ashlagi & Roth 2014, and earlier] 

Theorem: For k=2, there exists an IR 2-efficient 
allocation in every compatibility graph
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RESTRICTION #3

Suppose mechanism is IR and maximal . . .

[Ashlagi et al. 2015] 

Theorem: No IR mechanism is both maximal and 

strategyproof (even for k=2)

14
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HOPELESS …?
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DYNAMIC, CREDIT-
BASED MECHANISM
Repeated game
Centers are risk neutral, self interested
Transplant centers have (private) sets of pairs:

• Maximum capacity of 2ki
• General arrival distribution, mean rate is ki
• Exist for one time period

Centers reveal subset of their pairs at each time period, can 
match others internally

[Hajaj et al. AAAI-2015]
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CREDITS
Clearinghouse maintains a credit balance ci for each 
transplant center over time
High level idea:

• REDUCE ci: center i reveals fewer than expected
• INCREASE ci: center i reveals more than expected

• REDUCE ci: mechanism tiebreaks in center i’s favor
• INCREASE ci: mechanism tiebreaks against center I

Also remove centers who misbehave “too much.”

Credits now à matches in the future

14
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THE DYNAMIC MECHANISM
1. Initial credit update

• Centers reveal pairs
• Mechanism updates credits according to ki

2. Compute maximum global matching
• Gives the utility Ug of a max matching

3. Selection of a final matching
• Constrained to those matchings of utility Ug

• Take ci into account to (dis)favor utility given by matching to a 
specific center i

• Update ci based on this round’s (dis)favoring
4. Removal phase if center is negative for “too long”

14
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THEORETICAL 
GUARANTEES

Theorem: No mechanism that supports cycles 
and chains can be both long-term IR and 

efficient

Theorem: Under reasonable assumptions, the 
prior mechanism is both long-term IR and 

efficient

14
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LOTS OF OPEN 
PROBLEMS HERE
Dynamic mechanisms are more realistic, but …
• Vertices disappear after one time period

• All hospitals the same size

• No weights on edges

• No uncertainty on edges or vertices

• Upper bound on number of vertices per hospital

• Distribution might change over time

• ...

15
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IS LIFE ALWAYS SO (NP-)HARD?

15
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ONE SIMPLE ASSUMPTION 
COMPLEXITY THEORY HATES!
• Observation: real graphs are constructed from a few 

thousand if statements
• If the patient and donor have compatible blood types …
• ... and if they are compatible on 61 tissue type features ...
• ... and if their insurances match, and ages match, and ...
• ... then draw a directed edge; otherwise, don’t

• Hypothesis: real graphs can be represented by a small
constant number of bits per vertex – we’ll test later

15
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Given a constant number of if statements and a constant 
cycle cap, the clearing problem is in polynomial time

T
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[Dickerson Kazachkov Procaccia Sandholm arxiv:1605.07728]
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A NEW MODEL FOR 
KIDNEY EXCHANGE
• Graph G = (V, E) with patient-donor pair vi in V with

• Attribute vectors di and pi such that the qth element of di
(resp. pi) takes on one of a fixed number of types

• E.g., diq or piq takes a blood type in {O, A, B, AB}
• Call Q the set of all possible “types” of d and p

• Then, given compatibility function f : Q x Q à {0,1} that 
uniquely determines if an edge between di and pj exists

• We can create any compatibility graph (for large enough 
vectors in D and P)

• (Altruists are patient-donor pairs where the “patient” is 
compatible with all donors à chains are now cycles)

15
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[Dickerson et al. arxiv:1605.07728]
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• Let f(q,q’) = 1 if there is a directed edge from a donor with 
type q to a patient with type q’

• For all q = ( <q1,p,q1,d> …, <qr,p,qr,d>) in Q2r let
fC(q) = 1 if f(qt,d,qt+1,p) = 1 and f(qr,d,q1,p) = 1

• Given cycle cap L, define
T(L) = { q in Q2r : r ≤ L and fC(q) = 1 }

15
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CLEARING IS NOW IN 
POLYNOMIAL TIME

Given constant L and |Q|, 
the clearing problem is in polynomial time
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• T(L) is all vectors of types that create feasible cycles of 

length up to L
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Each set {mq} says we have mq1 cycles of type q1, mq2 cycles of 

q2, …, mq|T(L)| cycles of q|T(L)|, constrained to at most n cycles total
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Check to see if this collection is a legal cycle cover – just 

check that each type q isn’t used too many times in mq
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Return the legal cycle cover such that the sum over q of 
mq is maximized – aka the largest legal cycle cover
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FLIPPING ATTRIBUTES IS 
ALSO EASY 
• The human body tries to reject transplanted organs

• Before transplantation, can immunnosupress some “bad” 
traits of the patient to increase transplant opportunity

• Takes a toll on the patient’s health
• Suppose we can pay some cost to change attributes

• For all q, q’ in Q, let
c : Q x Q à R be cost of flipping q à q’

• Flip-and-Cover: maximize match size minus cost of flips

15
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Given constant L and |Q|, 
the Flip-and-Cover problem is in polynomial time
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A CONCRETE INSTANTIATION: 
THRESHOLDING
• Associate with each patient and donor a k-bit vector

• Count “conflict bits” that overlap at same position
• If more than threshold t conflict bits, don’t draw an edge

• Example: k = 2, blood containing antigens A and B
• Q = 2{ has-A, has-B } x 2{ no-A, no-B } 

• Draw edge if <di, pj> ≤ t; do not draw edge otherwise

16
0

Donor 
blood type

Patient 
blood type

Donor type A = [ 1, 0 ]
Patient type AB = [ 0, 0 ]

Donor type A = [ 1, 0 ]
Patient type O = [ 1, 1 ]

Related to intersection graphs:
Each vertex has a set; draw edge between vertices iff

sets intersect (by at least p elements)

A
S 
I
D
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UPPER BOUND: SOMETIMES 
YOU NEED LOTS OF BITS

1
6

1

For any n > 2, there exists a graph on n vertices 
that is not (k,0)-representable for all k < n

T
H
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For each vertex i, draw edge to each vertex 
except vertices i-1 and i
BWOC assume (k,0)-representable, k < n:

• Consider vertex 1

• (1, n) not in E; (1, i) in E otherwise

• Then there is a conflict bit between vertex 1 
and n that is not “turned on” anywhere else

• Do for n vertices à require k ≥ n

1 2

6 3

5 4
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HARDNESS: HOW MANY BITS 
DO I NEED FOR THIS GRAPH?

16
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The (k,t)-representation problem is NP-complete
(proof via reduction from 3SAT)
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Given: an input graph G = (V, E)
subset F of C(V, 2)

fixed positive k, nonnegative t

Does there exist:

k-length bit vectors di, pi for all vi in V

such that for (i,j) in F, also (i,j) in E iff <di,pj> ≤ t
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COMPUTING 
(K,T)-REPRESENTATIONS: QCP

• Quadratically-constrained discrete feasibility program:
• Constraint matrix not positive semi-definite à non-convex 

• State-of-the-art nonlinear solvers (e.g., Bonmin) fail

16
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[Bonami et al. 2008]

For each vertex, give k bits to the patient and k bits to the donor 

If an edge exists in the graph, assert the source donor vector and sink patient 
vector overlap by at most t

If an edge does not exist, make sure the overlap is greater than t
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COMPUTING 
(K,T)-REPRESENTATIONS: IP

• Integer program minimizes number of “conflict edges”
• CPLEX struggles to find non-trivial solutions
• CPLEX cannot find feasible solution (when forcing all xij = 0)

16
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COMPUTING 
(K,0)-REPRESENTATIONS: SAT

• When t = 0, can use a compact SAT formulation
• Interesting because it closely mimics real life

• We can solve small- and medium-sized graphs 
• Use Lingeling, a good parallel SAT solver [Biere 2014]
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Specific case of t = 0: if an edge exists, allow no overlap

Specific case of t = 0: if an edge does not exist, force any overlap
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CAN WE REPRESENT REAL GRAPHS 
WITH A SMALL NUMBER OF BITS?

Bigger real-world graphs (UNOS 2010 – 2012)

Theory: k
= |V|

Proved SAT

Proved UNSAT

Unknown (?)

John P. Dickerson - CMMRS - August 2018



RELAXING THE THRESHOLD
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Loosen bit threshold t on real UNOS graphs 

3x pairs matched!
(1-bit overlap allowed)

Everyone matched!*
(4-bit overlap allowed)

*all bits created 
equal, and not 
actually flipping 
bits – just relaxing 
global threshold
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QUESTIONS?

Joint work with:

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

More information:
http://jpdickerson.com
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/JohnDickerson/KidneyExchange

Funding & support:
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Facebook
Fellowship
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