Probabilistic
Network Programming

Nate Foster
Cornell

Plan

| Introduction
« Semantics Primer

« Software-Defined Networking

[I: NetkKAT
 Language Design
« Formal Semantics

- « Formal Semantics

|« Applications |

Quiz

What does this program do?

n := 0
while !(x = 0)
do

n :=n + 1;

Quiz

What does this program do?

n := 0
while !(x = 0)
do

n :=n + 1;

(X =0 ® x :=1);

k Random

Choice

Randomized
Routing

Topology

Assume each node can send and receive traffic at rate r

Demand Matrix

Destinations
S1 S2 S3 S4 S5 S6

High

Sources

Low

The Dij represents the demand from S; to S;

Routing Scheme

Assigns the demand to paths while respecting link capacities

Demand Matrix

Restrict attention to feasible demand matrices
- Send: XiDji<r
- Receive: ZjDij<r

Demand Matrix

Restrict attention to feasible demand matrices

- Send: XiDji<r
- Receive: ZjDij<r

Theorem [Keslassy '05]. Mesh wit
optimal design that routes all feasib

N capacities 2r/N is

e demand matrices

Shortest-path Routing

Shortest-path routing cannot route all feasible demands.

Shortest-path Routing

Nigs//

Shortest-path routing cannot route all feasible demands.

Shortest-path Routing

Shortest-path routing cannot route all feasible demands.

Shortest-path Routing

L/

Shortest-path routing cannot route all feasible demands.

Shortest-path Routing

Shortest-path routing cannot route all feasible demands.

Valiant Load Balancing

\\ /

L

Route every packet in two stages:
1. To arandom intermediary
2. To destination

Valiant Load Balancing

Route every packet in two stages:
1. To arandom intermediary
2. To destination

Valiant Load Balancing

\\ /

L

Route every packet in two stages:
1. To arandom intermediary
2. To destination

Theorem [Valiant '82]. Two-stage routing
can handle all feasible demand matrices.

Intuition: the randomization in the first stage balances
the offered load across all nodes (with high probability)

Oblivious Routing

© @ [Robust and efficient traffic ern X

(& C' @ Secure | https://research.fb.com/robust-and-efficient-traffic-engineering-with... @ Y @
Q
Research Areas Publications People Academic Programs Downloads & Projects Careers Blog
April 9,2018

Robust and efficient traffic engineering with
oblivious routing

By: Chiun Lin Lim, Petr Lapukhov

Related

. Publication
Luled, Sweden @ .
Y Ry

dbde@f, Denmark The EffeCt Of Computel’-

5
Clones, Irsand 3 3 Generated Descriptions on

Jor TR VAt Photo-Sharing Experiences of

Prineville, OR 6 b E0 g

Papiflioni NE l_. 2 s People with Visual
Los Lunasgtii @ e Sl T : i Impairments

Yuhang Zhao, Shaomei Wu, Lindsay
Reynolds, Shiri Azenkot

CSCW 2018
November 3,2018

Publication

The effects of natural scene

statistics on text readability in
meddidivrm il asres

Path Selection

=77 %(

Oblivious

The choice of paths can have a major impact on
the congestion induced in wide-area networks

} s

Oblivious Routing

Can generalize VLB to arbitrary topologies by randomly routing
traffic using a set of well-chosen tree-structured overlays

® Throughput ¢ Congestion Loss # Max Congestion

Optimal CSPF ECMP FFC R-MCF Obliv. SWAN SMORE

SO e LT
W

Time

Max Congestion

0.25

Path Budget

== CSPF —= KSP+MCF =0« Optimal
=t= ECMP == MCF == R-MCF
i FECH Obliv. =i SMORE

2 4 8 16 32 64
Path budget

Latency

5 1.0

)

-

3,

= 0.8

Q

O

< 0.6

(©

-

-

5 0.4

S = = CSPF === R-MCF
'430_2 = = ECMP === QOptimal
© e FFC* e KSP+MCF
LL

Obliv. = SMORE

50 100 150 200 250 300 350
RTT (ms)

Probablistic
NetKAT

A language for modeling & reasoning about
networks probabilistically.

Prob + NetKAT

probabilistic network
primitive primitives
P &g f:=n, dup

A language for modeling & reasoning about
networks probabilistically.

ProbNetKAT 2016
NetKAT 2013

KAT 1996

1956 1847

1 1

Prob + Net + KA + T
probabilistic network regular boolean
primitives primitives expressions tests

P ®rq f:=n, dup +, -, ¥ f=n

A language for modeling & reasoning about
networks probabilistically.

[p] € 28 = Dist(2H)

[p] e 2f—2H
Prob + Net + KA + T
probabilistic network regular boolean
primitives primitives expressions tests

P ®rq f:=n, dup +, -, ¥ f=n

1.0

0s

06

04

Probabilistic Semantics

YIVVIIVUU[‘U'I'U'IU"

L]

VTTVUTTYITIUYTYYTTIYT'VI’I"IT]YTTIITTY

A

IAnlllnllnlllAlnllnl

LA A

L]

LA

lllllllllllllllllllllllllllllllllllll

A

-1 0 1

Dy p-(X)

b

02

00

A

A

L

L

Probabilistic Reasoning

ProbNetKAT model p,
input distribution

Probabilistic Reasoning

ProbNetKAT model p,
input distribution

— output distribution v = [p](u) € Dist(2H)

Probabilistic Reasoning

e __—@ L
Expected / @

Utilization?

ProbNetKAT model p,
input distribution

— output distribution v = [p](u) € Dist(2H)

Probabilistic Reasoning

Utilization?

ProbNet
out

N

— output dist

di

]

KAT model p,

stribution
ribution v =[p](u) € Dist(2H)

utilization query: Q:2H = [0,e0]

expected utilization: E,[Q]

How to implement this?

e —e L

Utilization?

How to implement this?

]

S bt
® e =
/ .

Expected
Utilization?
-,[Q] = [Qadv

Lebesgue /

Integral

How to implement this?

& =

R

Utilization? —
-,[Q] = |Q dv

Lebesgue //‘ \ may be 2

Integral continuous
distribution!

Continuous Distribution
(=0 ® f:=1) » dup)*

Continuous Distribution
(=0 ® f:=1) » dup)*

execution

'

infinite path

random output
e 2H

Continuous Distribution
(=0 ® f:=1) » dup)*

execution

'

infinite path

random output
e 2H

How many paths are there? — one for everyr e [0,1]

Continuous Distribution
(=0 ® f:=1) » dup)*

execution

'

infinite path

random output
e 2H

How many paths are there? — one for everyr e [0,1]

What's the probability of any particular path? — 0

Key Idea

[imits + continuity = approximation

Key Idea

limits + continuity = approximation

converges ,
U1, Yo, U3, ... ————— [€ Dist(2H)

Key Idea

imits + continuity = approximation

converges ,
U1, Yo, U3, ... ————— [€ Dist(2H)

‘continuity

converges
f(lr), T(u2),f(us), . Rkl sl f(u) € R

Main Results

Main Results

1) Iteration-free programs generate only finite distributions

Main Results

1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions ...
... but can be approximated by bounded iteration

Main Results

1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions ...
... but can be approximated by bounded iteration

3) All programs can be approximated

Main Results

1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions ...
... but can be approximated by bounded iteration

continuity of
—l_l) I*I @

compositionality
of approximation

3) All programs can be approximated

Main Results

1) Iteration-free programs generate only fini

2) lIteration may introduce continuous distri

te distributions

outions ...

... but can be approximated by boundec

compositionality
of approximation

3) All programs can be approximated

4) Queries can be approximated

iteration

continuity of
—l_l) I*I @

continuity of

J, B[]

"
0.5
-
2 0.4
©
= 0.3]
-
= 02|
®
S 0.1
0.0

t
o | ECMP
A-A KsP
B ° ®-0 Multi
NN .
L AH-K Racke

2 4 6 8 10 12

Steps of Approximation

Quantitative
Verification

Decidable Semantics

Restricted to the local fragment, a NetKAT program can
be seen as a random function on packets:

AVAV..

input packets random output packets
function

Decidable Semantics

Restricted to the local fragment, a NetKAT program can
be seen as a random function on packets:

AVAV..

input packets random output packets
function

Such functions can be modeled as Markov chains:
. states are given by sets of packet: S = 2Pk
> Chainis given by transition matrix B € [0,1]55
B(a, b): probability of producing output b on input a
state space large, but finite!

Example: Sequential Composition

ProbNetKAT primitives can be mapped to matrices and
program operators map to matrix operations.

1

Blp-q] := 315 5 | e | 1 %
36

Blp] Blq]

Similarly forp & g, p ®r Q.

Problem: Kleene Star

Question
Let my! be the program that generates packet
Consider p = (true @ m!). What is B[p*1({ro}, {1o})?

Answer
BLp™{rto}, {mo}) = (14)"
Thus, Bl p*1({Ta}, {110})
= lim B[p™]({ro}, {o})
= lim (12)" =

But how to compute these limits in general?

Small Step Semantics

1 stepin S[pl = 1 iteration of p*

In one iteration, p™:

- executes p to get
new set of packets

© emits previous set
of packets

BIp*] = lim S[p]"

Nn—oco

Small Step Semantics

I stepin S[p] = 1 iteration of p¥

In one iteration, p™:

- executes p t0 g But hOW to a, &
new set of pag

. emits previou compute this?
of packets

BIp*] == lim S[p]"

N— oo

Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

Absorbing state: .D 1

Absorbing chain: any state can reach absorbing state

Crucial property: for #steps = oo, will reach absorbing
state with probability 1 (no matter the start state)

S
T=\p o

R 0

Am =09 R 0

Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

N 20 Blp™l=lim S[plncan Ve

be computed explicitly!

Crucial prc proing

state with prof8

lim T" =

n— 00 _(I — Q)_lR O_

Evaluation

Time (seconds)

Scalability

Because semantics is formulated in terms of (sparse)
matrices, can engineer an efficient implementation

Time limit = 3600s

T

Timed out |;
after OOM |

104\? ' — 1 T T 1T 1T1] i — T |
—@— Bayonet OOM after
. —#— ProbNetkaT [HMing out
103 -
102 &
101 B
100 -
109 101 102

Number of switches

10°

L

104

Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregation f W W
kidge ind’ Bind’ Bixd’ Bixd’ BiadV
s2 s3 s4 SH s6

But it provides shorter detours around failures

Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

ixd’ Bixd’ Bad’ Biad’ Biad
s2 s3 s4 SH s6

But it provides shorter detours around failures

Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregatlon

s3 s4 SH s6

But it provides shorter detours around failures

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

F103

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103

2 @
Q —
= &
O o

F1035

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

F1035
~103 + 5-nop rerouting

Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

w103 + 5-hop rerouting

Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

k F10, F10, F105 5
0 / / X
1 X / X
2 X / X
3 X X X
4 X X X
00 X X X

k =number of failures ¢ = 100% packet delivery

Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

F10, F10,

8 = DN = O
X X X X X \
x X X N\ NN

k =number of failures ¢ = 100% packet delivery

Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

k =number of failures ¢ = 100% packet delivery

Case Study: k-resilience
After fixing the bug...

Sophistication of Routing Scheme

F10g F105

g B W N RO
X X X X X \
xX % X N\ N

k =number of failures ¢ = 100% packet delivery

Prldelivery]

Case Study: Results

Resilience Latency
1.00 W 481 —&- ABFatTree, F10, ¥
A o 4 ¢ ABFatTree, F10;
S o 4. .
0.95 A g —o— AB FatTree, F103 5 °
\ =
\\ o 4.4 & FatTree, F103’5
\ O
0.90 A\ o
] c 4.2
—-A&- AB FatTree, F10g §
0.857 —¢- AB FatTree, F105 g 40
—o— AB FatTree, F103 5 = 33
\ o -
0.80

-4 FatTree, F103,5 \x

w
o

1/1281/64 1/32 1/16 1/8 1/4 1/1281/64 1/32 1/16 1/8 1/4
Link failure probability Link failure probability

Wrapping Up...

Conclusion

» Randomized algorit

NMSs are a powerfu

oroblems in many ¢

omains, including

tool for solving

networking

» Programming languages based on probabilistic

semantics are needed to express and reason about

these algorithms

» Can build practical tools that analyze quantitative
network properties such as peak congestion, resilience
to failures, and latency automatically

Reading

- Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark
Reitblatt, and Alexandra Silva. Probabilistic NetKAT. In
European Symposium on Programming (ESOP), April 2016.

Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen,
and Alexandra Silva. Cantor Meets Scott: Semantic
Foundations for Probabilistic Networks. In ACM
SIGPLAN—SIGACT Symposium on Principles of
Programming Languages (POPL), Paris, France, January 2017.

Acknowlegments

« Dexter Kozen (Cornell)

« David Kahn (CMU)

« Konstantinos Mamouras (Rice)
« Mark Reitblatt (Facebook)

« Alexandra Silva (UCL)

o Steffen Smolka (Cornell)

o Justin Hsu (Wisconsin)

