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n	:=	0	
while	!(x	=	0)	
do	
	n	:=	n	+	1;	
	(x	:=	0	⊕	x	:=	1);

Quiz

What does this program do?
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Topology

Assume each node can send and receive traffic at rate r



Demand Matrix
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Routing Scheme

Assigns the demand to paths while respecting link capacities



Demand Matrix

Restrict attention to feasible demand matrices 
• Send: ∑i Dji < r  
• Receive: ∑j Dij < r



Demand Matrix

Restrict attention to feasible demand matrices 
• Send: ∑i Dji < r  
• Receive: ∑j Dij < r

Theorem [Keslassy '05]. Mesh with capacities 2r/N is 
optimal design that routes all feasible demand matrices



Shortest-path Routing

Shortest-path routing cannot route all feasible demands. 
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Valiant Load Balancing

Route every packet in two stages: 
1. To a random intermediary 
2. To destination 
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Valiant Load Balancing

Route every packet in two stages: 
1. To a random intermediary 
2. To destination 

`

Theorem [Valiant '82]. Two-stage routing  
can handle all feasible demand matrices. 

Intuition: the randomization in the first stage balances 
the offered load across all nodes (with high probability)



Oblivious Routing



Path Selection
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The choice of paths can have a major impact on 
the congestion induced in wide-area networks



Oblivious Routing
Can generalize VLB to arbitrary topologies by randomly routing 
traffic using a set of well-chosen tree-structured overlays



Path Budget
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Latency
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Probablistic 
NetKAT



A language for modeling & reasoning about 
networks probabilistically.

Prob    +    NetKAT
network 

primitives
probabilistic 

primitive 
p ⊕r q f:=n, dup
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A language for modeling & reasoning about 
networks probabilistically.

Prob    +    Net    +    KA    +    T
regular 

expressions 
+, ⋅, *

boolean 
tests 
f=n

network 
primitives 
f:=n, dup

probabilistic 
primitives 

p ⊕r q

⟦p⟧ ∈ 2H → 2H

⟦p⟧ ∈ 2H → Dist(2H)



Probabilistic Semantics



ProbNetKAT model p,
input distribution μ 

Probabilistic Reasoning



ProbNetKAT model p,
input distribution μ 

→ output distribution ν = ⟦p⟧(μ) ∈ Dist(2H)

Probabilistic Reasoning



Expected  
 Utilization?
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Expected  
 Utilization?

ProbNetKAT model p,
input distribution μ 

→ output distribution ν = ⟦p⟧(μ) ∈ Dist(2H)

utilization query:   Q : 2H → [0,∞]

expected utilization:   Eν[Q]

Probabilistic Reasoning



Expected  
 Utilization?

How to implement this?

Eν[Q] = ∫Q dν
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Expected  
 Utilization?

How to implement this?

Eν[Q] = ∫Q dν

may be a 
continuous 
distribution!

Lebesgue 
Integral



Continuous Distribution
((f:=0 ⊕ f:=1) • dup)*
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Continuous Distribution
((f:=0 ⊕ f:=1) • dup)*

How many paths are there?
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execution 
≅ 

infinite path 
≅ 

random output  
∈ 2H

→ one for every r ∈ [0,1]

What’s the probability of any particular path? → 0



Key Idea

limits + continuity → approximation 
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Key Idea

limits + continuity → approximation 

μ ∈ Dist(2H)μ1, μ2, μ3, …
converges

f(μ) ∈ Rf(μ1), f(μ2),f(μ3), …
converges

continuity



Main Results
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1) Iteration-free programs generate only finite distributions

2) Iteration may introduce continuous distributions …  
… but can be approximated by bounded iteration

3) All programs can be approximated 

continuity of 

∫, E[-]
4) Queries can be approximated

Main Results

continuity of 
+,⋅,*, ⊕

compositionality  
of approximation
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(g) Path length (h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f)
with faulty links. (h) random walk in 4-cycle: all packets are
eventually delivered.

the interpreter approximates the answer through a monotonically
increasing sequence of values (Theorems 21 and 22). We used our
implementation to conduct several case studies involving proba-
bilistic reasoning about properties of a real-world network: Inter-
net2’s Abilene backbone [25]. Before presenting our case studies,
we briefly describe how we model the components of a network in
ProbNetKAT, extending the encodings from §2.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. Using multiple
paths generally reduces congestion and increases throughput,
but this scheme can perform poorly when multiple paths traverse
the same bottleneck link.

• k-Shortest Paths (KSP): The network uses the top k-shortest
paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits

the performance benefits of ECMP and also provides improved
fault-tolerance properties since it always spreads traffic across k
distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except
that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using
a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

P
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , �
d(u,v)⇡(u,v)!

where, ⇡(u,v)! , src u ; dst v ; sw u

⇡(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example (see
Figure 1) where each node sends equal traffic to every other node.
There are twelve (u, v) pairs with u 6= v. So, d(u, v)u 6=v = 1

12 and
d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =

Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg

(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =

fun hset ->

let n = HSet.length hset in

if n = 0 then Real.zero else

let sum = HSet.fold hset ⇠init:Real.zero

⇠f:(fun acc h -> Real.(acc + q h)) in

Real.(sum / of_int n)

The latency function (path length) counts the number of
switches in a history. We lift this function to sets and compute
the expectation (lift query avg) by computing the average
over all histories in the set (after discarding empty sets).

Case Study: Abilene. To demonstrate the applicability of Prob-
NetKAT for reasoning about a real network, we performed a case
study based on the topology and traffic demands from Internet2’s
Abilene backbone network as shown in Figure 5 (a). We evaluate the

Steps of Approximation
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Quantitative 
Verification



input packets output packetsrandom 
function

Restricted to the local fragment, a NetKAT program can 
be seen as a random function on packets:

Decidable Semantics



input packets output packetsrandom 
function

Restricted to the local fragment, a NetKAT program can 
be seen as a random function on packets:

Such functions can be modeled as Markov chains: 
states are given by sets of packet:  S = 2Pk 

Chain is given by transition matrix B ∈ [0,1]SxS 

B(a, b): probability of producing output b on input a 
state space large, but finite! 

Decidable Semantics



Similarly for p & q, p ⊕r q.

Example: Sequential Composition
ProbNetKAT primitives can be mapped to matrices and 

program operators map to matrix operations.

B⟦p⋅q⟧   := 

b1  ⋯   bn

⋮ 
a 
⋮

⋯ 
1/3   1/3   1/3 

⋯
⋅
⋯   c   ⋯  

b1 

⋮ 

bn

1/6 
⋮      2/6     ⋮ 

3/6
B⟦p⟧ B⟦q⟧



Answer  
B⟦p(n)⟧({π0}, {π0})  =  (1/2)n 

Thus,                            B⟦p*⟧({π0}, {π0})   
=  lim  B⟦p(n)⟧({π0}, {π0})   
=  lim (1/2)n  =  0             . 

Problem: Kleene Star
Question 
Let π1! be the program that generates packet π1 

Consider p =  (true ⊕ π1!).  What is B⟦p*⟧({π0}, {π0})?

n→∞

But how to compute these limits in general?

n→∞



Small Step Semantics
1 step in S⟦p⟧    ≈   1 iteration of p*

S⟦p⟧
In one iteration, p*: 

executes p to get 
new set of packets 

emits previous set 
of packets

c, ∅ ∪ a ∪ b

b, ∅ ∪ a

a, ∅

B⟦p⟧(a,b)

B⟦p⟧(b,c)

B⟦p*⟧ := lim S⟦p⟧n
n→∞



Small Step Semantics
1 step in S⟦p⟧    ≈   1 iteration of p*

S⟦p⟧
In one iteration, p*: 

executes p to get 
new set of packets 

emits previous set 
of packets

c, ∅ ∪ a ∪ b

b, ∅ ∪ a

a, ∅

B⟦p⟧(a,b)

B⟦p⟧(b,c)

B⟦p*⟧ := lim S⟦p⟧n
n→∞

But how to 
compute this?



S⟦p⟧ can be "massaged" into an absorbing Markov chain 

Absorbing state: 

Absorbing chain:  any state can reach absorbing state 

Crucial property:  for #steps → ∞, will reach absorbing 
state with probability 1 (no matter the start state)

Absorbing Markov Chains

1

lim
næŒ

T n =
5

I 0
(I ≠ Q)≠1R 0

6

T =
5

I 0
R Q

6



S⟦p⟧ can be "massaged" into an absorbing Markov chain 

Absorbing state: 

Absorbing chain:  any state can reach absorbing state 

Crucial property:  for #steps → ∞, will reach absorbing 
state with probability 1 (no matter the start state)

Absorbing Markov Chains

1

lim
næŒ

T n =
5

I 0
(I ≠ Q)≠1R 0

6

T =
5

I 0
R Q

6

So B⟦p*⟧ = lim S⟦p⟧n can 
be computed explicitly!

n→∞



Evaluation
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matrices, can engineer an efficient implementation
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We implemented F10 as a series of 3 refinements
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Case Study: Routing Schemes
We implemented F10 as a series of 3 refinements
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F100 + 3-hop rerouting

F103,5 
F103 + 5-hop rerouting

Requires Extra 
Packet State



Case Study: k-Resilience
We verified k-resilience using ProbNetKAT



Case Study: k-Resilience

k  = number of failures        ✔ = 100% packet delivery

Sophistication of Routing Scheme

Probabilistic Program Equivalence for NetKAT 21

k F100 F103 F103,5
0 3 3 7
1 7 3 7
2 7 3 7
3 7 7 7
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f ) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f ) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk ) ⌘ bM(F103,5, t, fk ) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk ) ⌘ bM(F103, fa�ree, fk )

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

We verified k-resilience using ProbNetKAT
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6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.
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8t ,k : bM(F103,5, t, fk ) ⌘ bM(F103,5, t, fk ) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk ) ⌘ bM(F103, fa�ree, fk )

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.

We verified k-resilience using ProbNetKAT

An uninitialized flag caused all 
packets to be dropped
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k  = number of failures        ✔ = 100% packet delivery

After fixing the bug...
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k F100 F103 F103,5
0 3 3 3
1 7 3 3
2 7 3 3
3 7 7 3
4 7 7 7
1 7 7 7

Table 1. Evaluating k-resilience of F10.

k
compare

(F100, F103)
compare

(F103, F103,5)
compare

(F103,5, teleport)

0 ⌘ ⌘ ⌘
1 < ⌘ ⌘
2 < ⌘ ⌘
3 < < ⌘
4 < < <
1 < < <

Table 2. Comparing schemes under k failures.

The ingress predicate in is a disjunction of switch-and-port tests over all ingress locations. This �rst
model is embedded into a re�ned model bM(p, t , f ) that integrates the failure model and declares all
necessary local variables that track the healthiness of individual ports:

bM(p, t , f ) , var up1 1 in
. . .

var upd 1 in
M((f ; p), t)

Here d denotes the maximum degree of all nodes in the FatTree and AB FatTree topologies from
Figures 5 and 6, which we encode as programs fa�ree and abfa�ree. much like in Section 2.2.

6.3 Checking invariants
We can gain con�dence in the correctness of our implementation of F10 by verifying that it
maintains certain key invariants. As an example, recall our implementation of F103,5: when we
perform 5-hop rerouting, we use an extra bit (default) to notify the next hop aggregation switch to
forward the packet downwards instead of performing default forwarding. The next hop follows
this instruction and also sets default back to 1. By design, the packet can not be delivered to the
destination with default set to 0.

To verify this property, we check the following equivalence:

8t ,k : bM(F103,5, t, fk ) ⌘ bM(F103,5, t, fk ) ; default=1

We executed the check using our implementation for k 2 {0, 1, 2, 3, 4,1} and t 2 {fa�ree, abfa�ree}.
As discussed below, we actually failed to implement this feature correctly on our �rst attempt due
to a subtle bug—we neglected to initialize the default �ag to 1 at the ingress.

6.4 F10 routing with FatTree
We previously saw that the structure of FatTree doesn’t allow 3-hop rerouting on failures because
all subtrees are of the same type. This would mean that augmenting ECMP with 3-hop rerouting
should have no e�ect, i.e. 3-hop rerouting should never kick in and act as a no-op. To verify this,
we can check the following equivalence:

8k : bM(F100, fa�ree, fk ) ⌘ bM(F103, fa�ree, fk )

Wehave used our implementation to check that this equivalence indeed holds fork 2 {0, 1, 2, 3, 4,1}.
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Wrapping Up...



Conclusion

• Randomized algorithms are a powerful tool for solving 
problems in many domains, including networking 

• Programming languages based on probabilistic 
semantics are needed to express and reason about 
these algorithms 

• Can build practical tools that analyze quantitative 
network properties such as peak congestion, resilience 
to failures, and latency automatically



Reading

• Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark 
Reitblatt, and Alexandra Silva. Probabilistic NetKAT. In 
European Symposium on Programming (ESOP), April 2016.  
 
Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, 
and Alexandra Silva. Cantor Meets Scott: Semantic 
Foundations for Probabilistic Networks. In ACM 
SIGPLAN—SIGACT Symposium on Principles of 
Programming Languages (POPL), Paris, France, January 2017.



Acknowlegments
•Dexter Kozen (Cornell) 
•David Kahn (CMU) 
•Konstantinos Mamouras (Rice) 
•Mark Reitblatt (Facebook) 
•Alexandra Silva (UCL) 
• Steffen Smolka (Cornell) 
• Justin Hsu (Wisconsin)


