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Quiz

What does this program do?

n := 0
while !(x = 0)
do

n :=n + 1;



Quiz

What does this program do?

n := 0
while !(x = 0)
do

n :=n + 1;

(X =0 ® x :=1);
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Topology

Assume each node can send and receive traffic at rate r



Demand Matrix

Destinations
S1 S2 S3 S4 S5 S6

High

Sources

Low

The Dij represents the demand from S; to S;



Routing Scheme

Assigns the demand to paths while respecting link capacities



Demand Matrix

Restrict attention to feasible demand matrices
- Send: XiDji<r
- Receive: ZjDij<r




Demand Matrix

Restrict attention to feasible demand matrices

- Send: XiDji<r
- Receive: ZjDij<r

Theorem [Keslassy '05]. Mesh wit
optimal design that routes all feasib

N capacities 2r/N is

e demand matrices



Shortest-path Routing

Shortest-path routing cannot route all feasible demands.
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Shortest-path routing cannot route all feasible demands.
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1. To arandom intermediary
2. To destination
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Valiant Load Balancing
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Route every packet in two stages:
1. To arandom intermediary
2. To destination




Theorem [Valiant '82]. Two-stage routing
can handle all feasible demand matrices.

Intuition: the randomization in the first stage balances
the offered load across all nodes (with high probability)




Oblivious Routing
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Path Selection

=77 %(

Oblivious

The choice of paths can have a major impact on
the congestion induced in wide-area networks

} s



Oblivious Routing

Can generalize VLB to arbitrary topologies by randomly routing
traffic using a set of well-chosen tree-structured overlays
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A language for modeling & reasoning about
networks probabilistically.

Prob  + NetKAT

probabilistic network
primitive primitives
P &g f:=n, dup



A language for modeling & reasoning about
networks probabilistically.

ProbNetKAT 2016
NetKAT 2013

KAT 1996

1956 1847

1 1

Prob + Net + KA + T
probabilistic network regular boolean
primitives primitives expressions tests

P ®rq f:=n, dup +, -, ¥ f=n



A language for modeling & reasoning about
networks probabilistically.

[p] € 28 = Dist(2H)

[p] e 2f—2H
Prob + Net + KA + T
probabilistic network regular boolean
primitives primitives expressions tests

P ®rq f:=n, dup +, -, ¥ f=n
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Probabilistic Reasoning

ProbNetKAT model p,
input distribution




Probabilistic Reasoning

ProbNetKAT model p,
input distribution

— output distribution v = [p](u) € Dist(2H)




Probabilistic Reasoning

e __—@ L
Expected / @

Utilization?

ProbNetKAT model p,
input distribution

— output distribution v = [p](u) € Dist(2H)




Probabilistic Reasoning

Utilization?

ProbNet
out

N

— output dist

di

]

KAT model p,

stribution
ribution v =[p](u) € Dist(2H)

utilization query: Q:2H = [0,e0]

expected utilization: E,[Q]



How to implement this?

e —e L

Utilization?




How to implement this?

]

S bt
® e =
/ .

Expected
Utilization?
-,[Q] = [Qadv

Lebesgue /

Integral



How to implement this?

& =

R

Utilization? —
-,[Q] = |Q dv

Lebesgue //‘ \ may be 2

Integral continuous
distribution!




Continuous Distribution
(=0 ® f:=1) » dup)*



Continuous Distribution
(=0 ® f:=1) » dup)*
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How many paths are there? — one for everyr e [0,1]



Continuous Distribution
(=0 ® f:=1) » dup)*

execution

'

infinite path

random output
e 2H

How many paths are there? — one for everyr e [0,1]

What's the probability of any particular path? — 0



Key Idea

[imits + continuity = approximation
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limits + continuity = approximation

converges ,
U1, Yo, U3, ... ————— [ € Dist(2H)



Key Idea

imits + continuity = approximation

converges ,
U1, Yo, U3, ... ————— [ € Dist(2H)

‘continuity

converges
f(lr), T(u2),f(us), . Rkl sl f(u) € R
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Main Results

1) Iteration-free programs generate only fini

2) lIteration may introduce continuous distri

te distributions

outions ...

... but can be approximated by boundec

compositionality
of approximation

3) All programs can be approximated

4) Queries can be approximated

iteration

continuity of
—l_l ) I*I @

continuity of

J, B[]
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Quantitative
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Decidable Semantics

Restricted to the local fragment, a NetKAT program can
be seen as a random function on packets:

AVAV..

input packets random output packets
function



Decidable Semantics

Restricted to the local fragment, a NetKAT program can
be seen as a random function on packets:

AVAV..

input packets random output packets
function

Such functions can be modeled as Markov chains:
. states are given by sets of packet: S = 2Pk
> Chainis given by transition matrix B € [0,1]55
B(a, b): probability of producing output b on input a
state space large, but finite!




Example: Sequential Composition

ProbNetKAT primitives can be mapped to matrices and
program operators map to matrix operations.

1

Blp-q] := 315 5 | e | 1 %
36

Blp] Blq]

Similarly forp & g, p ®r Q.



Problem: Kleene Star

Question
Let my! be the program that generates packet
Consider p = (true @ m!). What is B[p*1({ro}, {1o})?

Answer
BLp™{rto}, {mo}) = (14)"
Thus, Bl p*1({Ta}, {110})
= lim B[p™]({ro}, {o})
= lim (12)" =

But how to compute these limits in general?



Small Step Semantics

1 stepin S[pl = 1 iteration of p*

In one iteration, p™:

- executes p to get
new set of packets

© emits previous set
of packets

BIp*] = lim S[p]"

Nn—oco




Small Step Semantics

I stepin S[p] = 1 iteration of p¥

In one iteration, p™:

- executes p t0 g But hOW to a, &
new set of pag

. emits previou compute this?
of packets

BIp*] == lim S[p]"

N— oo




Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

Absorbing state: .D 1

Absorbing chain: any state can reach absorbing state

Crucial property: for #steps = oo, will reach absorbing
state with probability 1 (no matter the start state)

S
T=\p o

R 0

Am =09 R 0




Absorbing Markov Chains

S[pl can be "massaged” into an absorbing Markov chain

N 20 Blp™l=lim S[plncan Ve

be computed explicitly!

Crucial prc proing

state with prof8

lim T" =

n— 00 _(I — Q)_lR O_




Evaluation



Time (seconds)

Scalability

Because semantics is formulated in terms of (sparse)
matrices, can engineer an efficient implementation

Time limit = 3600s

T

Timed out |;
after OOM |
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Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregation f W W
kidge ind’ Bind’ Bixd’ Bixd’ BiadV
s2 s3 s4 SH s6

But it provides shorter detours around failures
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Case Study: Topology

An ABFatTree is much like a regular FatTree

Core

Aggregatlon

s3 s4 SH s6

But it provides shorter detours around failures



Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements
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Case Study: Routing Schemes

We implemented F10 as a series of 3 refinements

F10o

shortest path routing

F103
=100 + 3-nop rerouting

ey @
-; 0
N -
— D
Q. =

T
= 5
O 0

w103 + 5-hop rerouting



Case Study: k-Resilience
We verified k-resilience using ProbNetKAT



Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

k  F10, F10, F105 5
0 / / X
1 X / X
2 X / X
3 X X X
4 X X X
00 X X X

k =number of failures ¢ = 100% packet delivery
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Case Study: k-Resilience
We verified k-resilience using ProbNetKAT

Sophistication of Routing Scheme

k =number of failures ¢ = 100% packet delivery



Case Study: k-resilience
After fixing the bug...

Sophistication of Routing Scheme

F10g F105

g B W N RO
X X X X X \
xX % X N\ N

k =number of failures ¢ = 100% packet delivery



Prldelivery]

Case Study: Results

Resilience Latency
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Wrapping Up...



Conclusion

» Randomized algorit

NMSs are a powerfu

oroblems in many ¢

omains, including

tool for solving

networking

» Programming languages based on probabilistic

semantics are needed to express and reason about

these algorithms

» Can build practical tools that analyze quantitative
network properties such as peak congestion, resilience
to failures, and latency automatically
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